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Abstract

Themain aim of this paper is to give analytical approach to exact solutions for theWick-type

stochastic fractional Zhiber -Shabat equation. By means of Hermite transform, white noise

theory and fractional Riccati equation method, white noise functional solutions for the Wick-

type stochastic fractional Zhiber -Shabat equation are derived. Exact traveling wave solutions

for the variable coefficients space-time fractional Zhiber -Shabat equations are given by using

the fractional Riccati equation method. The obtained results include soliton-like, periodic and

rational solutions.
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1 Introduction

This paper is devoted to explore the white noise functional solutions for the variable coefficients

Wick-type stochastic fractional Zhiber -Shabat equation as the following form:

𝐷
𝛾
𝑥𝑈𝑡 + 𝑃(𝑡) � 𝑒�𝑈 +𝑄(𝑡) � 𝑒�(−𝑈) + 𝑅(𝑡) � 𝑒�(−2𝑈) = 0, 0 < 𝛾 ≤ 1, (1.1)
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where 𝐷𝛾
𝑥𝑈 are the modified Riemann-Liouville derivatives defined by Jumarie[1]

𝐷
𝛾
𝑥 𝑓 (𝑥) =



1
Γ(1 − 𝛾)

∫ 𝑥
0 (𝑥 − 𝜃)

−𝛾−1 [ 𝑓 (𝜃) − 𝑓 (0)]𝑑𝜃, 𝛾 < 0,

1
Γ(1 − 𝛾)

𝑑

𝑑𝑥

∫ 𝑥
0 (𝑥 − 𝜃)

−𝛾 [ 𝑓 (𝜃) − 𝑓 (0)]𝑑𝜃, 0 < 𝛾 < 1,[
𝑓 (𝛾−𝑛) (𝑥)

] (𝑛)
, 𝑛 ≤ 𝛾 < 𝑛 + 1, 𝑛 ∈ N

(1.2)

The coefficients 𝑃(𝑡), 𝑄(𝑡) and 𝑅(𝑡) areGaussianwhite noise functions, and ”�” is theWick product

on the Kondratiev distribution space(S)−1which was defined in [2]. Eq.(1.1) can be considered as

the Wick version of the following variable coefficients fractional KdV equation:

𝑑𝛼

𝑑𝑥𝛼
𝑢𝑡 + 𝑝(𝑡)𝑒𝑢 + 𝑞(𝑡)𝑒−𝑢 + 𝑟 (𝑡)𝑒−2𝑢 = 0, (𝑥, 𝑡) ∈ R × R+, 0 < 𝛼 ≤ 1, (1.3)

where𝑝(𝑡), 𝑞(𝑡)and𝑟 (𝑡)are bounded measurable or integrable functions onR+, this means that

Eq.(1.1) can be regarded as the perturbation of Eq.(1.3). El Wakil et al[3] asserted that, Eq.(1.3) is

the mathematical model for small but finite amplitude electron-acoustic solitary waves in plasma

of cold electron fluid with two different temperature isothermal ions. Therefore, if this model is

perturbed by Gaussian white noise, Eq.(1.1) regarded as the mathematical model for the resultant

phenomenon.

Since Wadati first introduced and studied stochastic KdV equations [4], many authors, e.g., Xie

[5-6], Chen [7-8], Ghany [9], Ghany et al [10-12] and so on, have investigated more intensively

the stochastic partial differential equations. In the past several decades, many authors mainly had

paid attention to study the nonlinear fractional partial differential equations and gave approxima-

tive solutions by using various methods, among these are homotopy perturbation method [13-14],

variational iteration method [15], Adomian’s decomposition method [16-17] etc.

In the present paper, with the help of Hermite transform, inverse Hermite transform, white noise

theory, fractional sub-equation method and fractional Riccati equation method, I will give white

noise functional solutions for the Wick-type stochastic space fractional Zihber-Shabat equation

and new family of exact traveling wave solutions for the variable coefficients space fractional
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Zihber-Shabat equations. New family of exact analytical solutions for the space-time fractional

Zihber-Shabat equations with the modified Riemann-Liouville derivative. The obtained results

include generalized hyperbolic function solutions, generalized trigonometric function solutions

and rational solutions.

2 Modified fractional derivative on the space (S)−1

Suppose that 𝑆(R𝑑) and 𝑆′(R𝑑) are the Hida test function space and the Hida distribution space on

R𝑑 , respectively. Let ℎ𝑛 (𝑥) be Hermite polynomials and put

𝜁𝑛 = 𝑒
−𝑥2ℎ𝑛 (

√
2𝑥)/((𝑛 − 1)!𝜋) 12 , 𝑛 > 1. (2.1)

then, the collection {𝜁𝑛}𝑛>1 constitutes an orthogonal basis for 𝐿2(R).

Let 𝛼 = (𝛼1, 𝛼2, ..., 𝛼𝑑) denote d-dimensional multi-indices with 𝛼1, 𝛼2, ..., 𝛼𝑑 ∈ N. The family of

tensor products

𝜁𝛼 := 𝜁(𝛼1,𝛼2,...,𝛼𝑑) = 𝜁𝛼1 ⊗ 𝜁𝛼2 ⊗ ... ⊗ 𝜁𝛼𝑑 (2.2)

forms an orthogonal basis for 𝐿2(R𝑑).

Suppose that 𝛼(𝑖) = (𝛼(𝑖)
1 , 𝛼

(𝑖)
2 , ..., 𝛼

(𝑖)
𝑑
) is the i-th multi-index number in some fixed ordering of all

d-dimensional multi-indices 𝛼. We can, and will, assume that this ordering has the property that

𝑖 < 𝑗 ⇒ 𝛼
(𝑖)
1 + 𝛼(𝑖)

2 + ... + 𝛼(𝑖)
𝑑
< 𝛼

( 𝑗)
1 + 𝛼( 𝑗)

2 + ... + 𝛼( 𝑗)
𝑑

(2.3)

i.e., the {𝛼( 𝑗)}∞
𝑗=1 occurs in an increasing order. Now

Define

𝜂𝑖 := 𝜁𝛼 (𝑖)
1

⊗ 𝜁
𝛼
(𝑖)
2

⊗ ... ⊗ 𝜁
𝛼
(𝑖)
𝑑

, 𝑖 > 1. (2.4)

We need to consider multi-indices of arbitrary length. For simplification of notation, we regard

multi-indices as elements of the space (NN0 )𝑐 of all sequences 𝛼 = (𝛼1, 𝛼2, ..., 𝛼𝑑) with elements

𝛼𝑖 ∈ N0 and with compact support, i.e., with only finitely many 𝛼𝑖 ≠ 0. We write 𝐽 = (NN0 )𝑐, for

𝛼 ∈ 𝐽,
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Define

𝐻𝛼 (𝜔) :=
∞∏
𝑖=1

ℎ𝛼𝑖 (< 𝜔, 𝜂𝑖 >), 𝜔 = (𝜔1, 𝜔2, ..., 𝜔𝑑) ∈ 𝑆′(R𝑑) (2.5)

For a fixed 𝑛 ∈ N and for all 𝑘 ∈ N, suppose the space (𝑆)𝑛1 consists of those 𝑓 (𝜔) =
∑
𝛼 𝑐𝛼𝐻𝛼 (𝜔) ∈⊕𝑛

𝑘=1 𝐿2(𝜇) with 𝑐𝛼 ∈ R𝑛 such that

| | 𝑓 | |21,𝑘 =
∑︁
𝛼

𝑐2𝛼 (𝛼!)2(2N)𝑘𝛼 < ∞ (2.6)

where, 𝑐2𝛼 = |𝑐𝛼 |2 =
∑𝑛
𝑘=1(𝑐

(𝑘)
𝛼 )2 if 𝑐𝛼 = (𝑐(1)𝛼 , 𝑐

(2)
𝛼 , ..., 𝑐

(𝑛)
𝛼 ) ∈ R𝑛 and 𝜇 is the white noise measure

on (𝑆′(R), 𝐵(𝑆′(R))), 𝛼! = ∏∞
𝑘=1 𝛼𝑘 ! and (2N)𝛼 =

∏
𝑗 (2 𝑗)𝛼 𝑗 for 𝛼 ∈ 𝐽.

The space (𝑆)𝑛−1 consists of all formal expansions 𝐹 (𝜔) =
∑
𝛼 𝑏𝛼𝐻𝛼 (𝜔) with 𝑏𝛼 ∈ R𝑛 such that

| | 𝑓 | |−1,−𝑞 =
∑
𝛼 𝑏
2
𝛼 (2N)−𝑞𝛼 < ∞ for some 𝑞 ∈ N. The family of seminorms | | 𝑓 | |1,𝑘 , 𝑘 ∈ N gives

rise to a topology on (𝑆)𝑛1 , and we can regard (𝑆)
𝑛
−1 as the dual of (𝑆)

𝑛
1 by the action

< 𝐹, 𝑓 >=
∑︁
𝛼

(𝑏𝛼, 𝑐𝛼)𝛼! (2.7)

where (𝑏𝛼, 𝑐𝛼) is the inner product in R𝑛.

The Wick product 𝑓 � 𝐹 of two elements 𝑓 = ∑
𝛼 𝑎𝛼𝐻𝛼, 𝐹 =

∑
𝛽 𝑏𝛽𝐻𝛽 ∈ (𝑆)𝑛−1 with 𝑎𝛼, 𝑏𝛽 ∈ R𝑛,

is defined by

𝑓 � 𝐹 =
∑︁
𝛼,𝛽

(𝑎𝛼, 𝑏𝛽)𝐻𝛼+𝛽 (2.8)

The spaces (𝑆)𝑛1 , (𝑆)
𝑛
−1, 𝑆(R

𝑑) and 𝑆′(R𝑑) are closed under Wick products.

For 𝐹 =
∑
𝛼 𝑏𝛼𝐻𝛼 ∈ (𝑆)𝑛−1, with 𝑏𝛼 ∈ R𝑛, the Hermite transformation of 𝐹, is defined by

H𝐹 (𝑧) = 𝐹 (𝑧) =
∑︁
𝛼

𝑏𝛼𝑧
𝛼 ∈ C𝑁 (2.9)

where 𝑧 = (𝑧1, 𝑧2, ...) ∈ C𝑁 (the set of all sequences of complex numbers) and 𝑧𝛼 = 𝑧
𝛼1
1 𝑧

𝛼2
2 ...𝑧

𝛼𝑛
𝑛 , if

𝛼 ∈ 𝐽, where 𝑧0
𝑗
= 1.

For 𝐹, 𝐺 ∈ (𝑆)𝑛−1 we have

�̃� �𝐺 (𝑧) = 𝐹 (𝑧).𝐺 (𝑧) (2.10)

for all 𝑧 such that 𝐹 (𝑧) and𝐺 (𝑧) exist. The product on the right-hand side of the above formula is the
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complex bilinear product between two elements of C𝑁 defined by (𝑧11, 𝑧
1
2, ..., 𝑧

1
𝑛).(𝑧21, 𝑧

2
2, ..., 𝑧

2
𝑛) =∑𝑛

𝑘=1 𝑧
1
𝑘
𝑧2
𝑘
.

Let 𝑋 =
∑
𝛼 𝑎𝛼𝐻𝛼, then the vector 𝑐0 = 𝑋 (0) ∈ R𝑁 is called the generalized expectation of 𝑋 which

denoted by 𝐸 (𝑋). Suppose that 𝑔 : 𝑈 −→ C𝑀 is an analytic function, where U is a neighborhood

of 𝐸 (𝑋). Assume that the Taylor series of g around 𝐸 (𝑋) have coefficients in R𝑀 . Then the

Wick version 𝑔�(𝑋) = H−1(𝑔 ◦ 𝑋) ∈ (𝑆)𝑀−1. In other words, if g has the power series expansion

𝑔(𝑧) = ∑
𝑎𝛼 (𝑧 − 𝐸 (𝑋))𝛼, with 𝑎𝛼 ∈ R𝑀 , then 𝑔�(𝑧) = ∑

𝑎𝛼 (𝑧 − 𝐸 (𝑋))�𝛼 ∈ (𝑆)𝑀−1.

Suppose that modelling consideration leads us to consider an stochastic fractional PDE as follows:

𝐴(𝑡, 𝑥, 𝜕𝑡𝛼 ,Δ𝑥𝛽 ,𝑈, 𝜔) = 0 (2.11)

where 𝐴 is some given function𝑈 = 𝑈 (𝑡, 𝑥, 𝜔) is an unknown (generalized) stochastic process, and

the operators 𝜕𝑡𝛼 = 𝜕𝛼

𝜕𝑡𝛼
,Δ𝑥𝛽 = ( 𝜕𝛽1

𝜕𝑥
𝛽1
1
, 𝜕

𝛽2

𝜕𝑥
𝛽2
2
, ..., 𝜕

𝛽𝑑

𝜕𝑥
𝛽𝑑
𝑑

) when 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑑), 𝛽 = (𝛽1, 𝛽2, ..., 𝛽𝑑) ∈

R𝑑 . Firstly, we interpret all products as Wick products and all functions as their Wick versions.

Wick version of Eq. (2.11) is written as follows:

𝐴�(𝑡, 𝑥, 𝜕𝑡𝛼 ,Δ𝑥𝛽 ,𝑈, 𝜔) = 0 (2.12)

Secondly, we take the Hermite transformation of Eq. (2.12), which turns Wick products into

ordinary products (between complex numbers), so the equation takes the form

𝐴(𝑡, 𝑥, 𝜕𝑡𝛼 ,Δ𝑥𝛽 ,𝑈, 𝑧1, 𝑧2, ...) = 0 (2.13)

where𝑈 = H(𝑈) is the Hermite transformation of𝑈 and 𝑧1, 𝑧2, ... are complex numbers.

Definition 2.1. A measurable function

𝑢 : R𝑑 −→ (𝑆)𝑁−1
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is called (𝑆)𝑁−1-process. The partial derivative
𝜕𝑢
𝜕𝑥𝑘
of an (𝑆)𝑁−1 𝑢 is defined by

𝜕𝑢

𝜕𝑥𝑘
(𝑥1, ..., 𝑥𝑑) = 𝑙𝑖𝑚Δ𝑥𝑘→0

𝑢(𝑥1, ...𝑥𝑘 + Δ𝑥𝑘 , 𝑥𝑑) − 𝑢(𝑥1, ..., 𝑥𝑑)
Δ𝑥𝑘

provided the limit exists in (𝑆)𝑁−1. Let𝑢be a continuous(S)−1-process, and letℎ > 0denote a constant

discretization span. Define the forward operator𝐹𝑊𝑥𝑘 (ℎ),by

𝐹𝑊𝑥𝑘 (ℎ)𝑢(𝑥) := 𝑢(𝑥1, ..., 𝑥𝑘 + ℎ, 𝑥𝑘+1, ..., 𝑥𝑑). (2.14)

Then for0 < 𝛼 ≤ 1,the𝛼-orderfractional difference of𝑢is defined by the expression

Δ𝛼𝑥𝑘𝑢(𝑥) := (𝐹𝑊𝑥𝑘 (ℎ) − 1)𝛼 .𝑢(𝑥) =
∞∑︁
𝑗=0

(−1) 𝑗
(
𝛼

𝑗

)
𝑢(𝑥1, ..., 𝑥𝑘 + (𝛼 − 𝑗)ℎ, 𝑥𝑘+1, ..., 𝑥𝑑), (2.15)

and its𝛼-orderfractional derivative is given by

𝐷𝛼
𝑥𝑘
𝑢(𝑥) = lim

ℎ↓0

Δ𝛼𝑥𝑘𝑢(𝑥)
ℎ𝛼

. (2.16)

provided the limit exists in(S)−1.

In terms of the Hermite transform the limit on the right-hand side of (2.14) exists if and only if

there exists an element𝑌 ∈ (S)−1such that 1ℎ𝛼Δ
𝛼
𝑥𝑘
�̃�(𝑥, 𝑧) → 𝑌 (𝑧)pointwise boundedly (uniformly)

in𝐾𝜎 (𝛿)for some𝜎 < ∞, 𝛿 > 0,where

𝐾𝜎 (𝛿) =
{
𝑧 = (𝑧1, 𝑧2, ...) ∈ CN :

∑︁
𝜇≠0

|𝑧𝜇 |2(2N)𝜎𝜇 < 𝛿
}

If this is the case, then𝑌 is denoted by𝐷𝛼
𝑥𝑘
𝑢(𝑥).

Let us denote by𝐿1(𝑎, 𝑏; (S)−1)the space of all strongly integrable(S)−1-processeson[𝑎, 𝑏],then

for𝑋 ∈ 𝐿1(𝑎, 𝑏; (S)−1)we can set the𝛼-orderRiemann-Liouville fractional integral operator and

the modified Riemann-Liouville fractional derivative as follows:
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Definition 2.2. The𝛼-orderRiemann-Liouville fractional integral operator of𝑋is defined as

𝐽𝛼𝑋 (𝑡) := 1
Γ(𝛼)

∫ 𝑡

0
(𝑡 − 𝜏)𝛼−1𝑋 (𝜏)𝑑𝜏,

for 𝛼 > 0, 𝑡 ∈ [𝑎, 𝑏] and 𝐽0𝑋 (𝑡) := 𝑋 (𝑡). (2.17)

When we apply Hermite transform to solve stochastic differential equations the following observa-

tion is important.

Assume that the(S)−1-process 𝑋 (𝑡, 𝜔)has an𝛼-orderfractional derivative and

𝐷𝛼
𝑡 𝑋 (𝑡, 𝜔) = 𝐹 (𝑡, 𝜔) in (S)−1, (2.18)

this equivalent to saying that

lim
ℎ↓0

Δ𝛼𝑥𝑘𝑋 (𝑡, 𝑧)
ℎ𝛼

= 𝐹 (𝑡, 𝑧) (2.19)

uniformly for𝑧 ∈ 𝐾𝜎 (𝛿)for some𝜎 < ∞, 𝛿 > 0.For this it is clearly necessary that

𝐷𝛼
𝑡 𝑋 (𝑡, 𝑧) = 𝐹 (𝑡, 𝑧) for all 𝑧 ∈ 𝐾𝜎 (𝛿), (2.20)

but apparently not sufficient, because we also need that the pointwise convergence is bounded

for𝑧 ∈ 𝐾𝜎 (𝛿). The following result is sufficient for our purposes.

Lemma 2.1. Suppose𝑋 (𝑡, 𝜔)and𝐹 (𝑡, 𝜔)are(S)−1-processessuch that

(i) 𝐷𝛼
𝑡 𝑋 (𝑡, 𝑧) = 𝐹 (𝑡, 𝑧)for each(𝑡, 𝑧) ∈ (𝑎, 𝑏) × 𝐾𝜎 (𝛿)and that

(ii) 𝐹 (𝑡, 𝑧)is a bounded function for(𝑡, 𝑧) ∈ (𝑎, 𝑏) × 𝐾𝜎 (𝛿)and continuous with respect to𝑡 ∈

(𝑎, 𝑏)for each𝑧 ∈ 𝐾𝜎 (𝛿).

Then𝑋 (𝑡, 𝜔)has an𝛼-orderfractional derivative and for each𝑡 ∈ (𝑎, 𝑏)

𝐷𝛼
𝑡 𝑋 (𝑡, 𝜔) = 𝐹 (𝑡, 𝜔) in (S)−1. (2.21)
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Proof. According to the fractional counterpart of the mean value theorem [?], we have

1
ℎ𝛼

Δ𝛼𝑡 𝑋 (𝑡, 𝑧) =
Γ(1 + 𝛼)
ℎ𝛼

(
𝑋 (𝑡 + ℎ, 𝑧) − 𝑋 (𝑡, 𝑧)

)
= 𝐹 (𝑡 + 𝜃ℎ, 𝑧), (2.22)

for some𝜃 ∈ [0, 1]and for each𝑧 ∈ 𝐾𝜎 (𝛿).So if the hypotheses (i), (ii) hold, then

lim
ℎ↓0

Δ𝛼𝑡 𝑋 (𝑡, 𝑧)
ℎ𝛼

= 𝐹 (𝑡, 𝑧) (2.23)

pointwise boundedly for𝑧 ∈ 𝐾𝜎 (𝛿). �

Taking Hermite transform of (2.15) and using [2, Lemma 2.8.5], we get the following result

Lemma 2.2. Let𝑋 (𝑡)be an(S)−1-process.Suppose there exist𝜎 < ∞,𝛿 > 0such that

sup{𝑋 (𝑡, 𝑧) : 𝑡 ∈ [𝑎, 𝑏], 𝑧 ∈ 𝐾𝜎 (𝛿)} < ∞ (2.24)

and𝑋 (𝑡, 𝑧)is a continuous function with respect to𝑡 ∈ [𝑎, 𝑏]for each𝑧 ∈ 𝐾𝜎 (𝛿).Then the𝛼-order

Riemann-Liouville fractional integral operator of𝑋 (𝑡)exists and

𝐽𝛼𝑋 (𝑡) (𝑧) = 𝐽𝛼𝑋 (𝑡, 𝑧), for 𝛼 ≥ 0, 𝑡 ∈ [𝑎, 𝑏], 𝑧 ∈ 𝐾𝜎 (𝛿). (2.25)

In the case of higher order derivatives we have the following result

Lemma 2.3. Suppose there exist an open interval𝐼,real numbers𝜎, 𝛿and a function𝑢 : 𝐼×𝐾𝜎 (𝛿) →

Csuch that

𝐷2𝛼𝑥 𝑢(𝑥, 𝑧) = 𝐹 (𝑥, 𝑧), for (𝑥, 𝑧) ∈ 𝐼 × 𝐾𝜎 (𝛿) (2.26)

where𝐹 (𝑥) ∈ (S)−1for all𝑥 ∈ 𝐼. Suppose𝐷2𝛼𝑥 𝑢is bounded for(𝑥, 𝑧) ∈ 𝐼 × 𝐾𝜎 (𝛿)and continuous

with respect to𝑥 ∈ 𝐼for each𝑧 ∈ 𝐾𝜎 (𝛿).Then there exists𝑈 (𝑥) ∈ (S)−1such that

𝐷2𝛼𝑥 𝑈 (𝑥) = 𝐹 (𝑥), for 𝑥 ∈ 𝐼 . (2.27)
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Proof. By the fractional counterpart of the mean value theorem again, we have

1
ℎ2𝛼

Δ2𝛼𝑥 𝑢(𝑥, 𝑧) =
Γ2(1 + 𝛼)
ℎ2𝛼

(
𝑢(𝑥 + 2ℎ, 𝑧) − 2𝑢(𝑥 + ℎ, 𝑧) + 𝑢(𝑥, 𝑧)

)
= 𝐹 (𝑥 + 𝜃ℎ, 𝑧) (2.28)

for some𝜃 ∈ [0, 1]and for each𝑧 ∈ 𝐾𝜎 (𝛿). So if (2.14) and the assumptions on𝐷2𝛼𝑥 𝑢hold, then

lim
ℎ↓0

Δ2𝛼𝑥 �̃�(𝑡, 𝑧)
ℎ2𝛼

= 𝐹 (𝑥, 𝑧) (2.29)

pointwise boundedly for𝑧 ∈ 𝐾𝜎 (𝛿). According to [2, Lemma 2.8.5], we can apply the inverse

Hermite transform to Eq.(2.17) and get

𝐷2𝛼𝑥 𝑈 (𝑥) = 𝐹 (𝑥) in (S)−1 and for all 𝑥 ∈ 𝐼, (2.30)

where𝑢(𝑥, 𝑧) = 𝑈 (𝑥) (𝑧)for all(𝑥, 𝑧) ∈ 𝐼 × 𝐾𝜎 (𝛿) �

More generally , we can apply the argument of Lemma 2.1 repeatedly and get the following result

Theorem 2.4. Suppose𝑢(𝑥, 𝑡, 𝑧)is a solution (in the usual strong, pointwise sense) of the equation

Ω̃(𝑥, 𝑡, 𝐷𝛼
𝑡 , 𝐷

𝛼
𝑥1 , ..., 𝐷

𝛼
𝑥𝑑
, 𝑢, 𝑧) = 0 (2.31)

for(𝑥, 𝑡)in some bounded open set𝐺 ⊂ R𝑑 × R+,and for all𝑧 ∈ 𝐾𝜎 (𝛿),for some𝜎, 𝛿. Moreover,

suppose that𝑢(𝑥, 𝑡, 𝑧)and all its partial fractional derivatives, which are involved in (2.19), are

(uniformly) bounded for(𝑥, 𝑡, 𝑧) ∈ 𝐺 × 𝐾𝜎 (𝛿),continuous with respect to(𝑥, 𝑡) ∈ 𝐺for each𝑧 ∈

𝐾𝜎 (𝛿)and analytic with respect to𝑧 ∈ 𝐾𝜎 (𝛿),for all(𝑥, 𝑡) ∈ 𝐺.Then there exists𝑈 (𝑥, 𝑡) ∈ (S)−1
such that𝑢(𝑥, 𝑡, 𝑧) = 𝑈 (𝑡, 𝑥) (𝑧)for all(𝑡, 𝑥, 𝑧) ∈ 𝐺 × 𝐾𝜎 (𝛿)and𝑈 (𝑥, 𝑡)solves (in the strong sense)

the equation

Ω�(𝑡, 𝑥, 𝐷𝛼
𝑡 , 𝐷

𝛼
𝑥1 , ..., 𝐷

𝛼
𝑥𝑑
,𝑈, 𝜔) = 0 in (S)−1. (2.32)
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3 White Noise Functional Solutions of Eq.(1.1)

Taking the Hermite transform of Eq.(1.1), we get the deterministic equation:

𝐷
𝛾
𝑥𝑈𝑡 (𝑥, 𝑡, 𝑧) + 𝑃(𝑡, 𝑧)𝑒𝑈 (𝑥,𝑡,𝑧) +𝑄(𝑡, 𝑧)𝑒−𝑈 (𝑥,𝑡,𝑧) + 𝑅(𝑡, 𝑧)𝑒−2𝑈 (𝑥,𝑡,𝑧) = 0, 0 < 𝛾 ≤ 1, (3.1)

where𝑧 = (𝑧1, 𝑧2, ...) ∈ (CN)𝑐is a vector parameter. For the sake of simplicity we denote𝑃(𝑡, 𝑧) =

𝑃(𝑡, 𝑧),𝑄(𝑡, 𝑧) = 𝑄(𝑡, 𝑧),𝑅(𝑡, 𝑧) = 𝑅(𝑡, 𝑧)and𝑢(𝑥, 𝑡, 𝑧) = 𝑈 (𝑥, 𝑡, 𝑧). To determine the solution

𝑢(𝑥, 𝑡, 𝑧) explicitly, we first introduce the following transformations:

𝑢 = 𝑢(𝜉), 𝜉 = 𝑓 (𝑡, 𝑧)𝑥 + 𝑔(𝑡, 𝑧), (3.2)

where 𝑓 (𝑡, 𝑧)and𝑔(𝑡, 𝑧)are functions to be determined later, then Eq.(3.1) is reduced into a fractional

ordinary differential equation:

𝑓
𝛾
𝑡 𝐷

𝛾

𝜉
𝑢(𝜉) + 𝑃(𝑡, 𝑧)𝑒𝑢(𝜉) +𝑄(𝑡, 𝑧)𝑒−𝑢(𝜉) + 𝑅(𝑡, 𝑧)𝑒−2𝑢(𝜉) = 0, 0 < 𝛾 ≤ 1, (3.3)

We next suppose that Eq.(3.3) has a solution in the form:

𝑢 =

𝑛∑︁
𝑖=0

𝑎𝑖 (𝑡, 𝑧) 𝐹𝑖 (𝜉), (3.4)

where𝑎𝑖 (𝑖 = 0, 1, ..., 𝑛)are functions to be determined later,𝑛is a positive integer and𝐹satisfies the

fractional Riccati equation:

𝐷
𝛾

𝜉
𝐹 = 𝜎 + 𝐹2, (3.5)

where𝜎is an arbitrary constant. Balancing𝑢𝐷𝛽

𝜉
𝑢with𝐷3𝛽

𝜉
𝑢in Eq.(3.3) gives𝑛 = 2. So (3.4) can be

simplified as following:

𝑢 = 𝑎0 + 𝑎1𝐹 + 𝑎2𝐹2 (3.6)

By substituting Eq.(3.6) along with Eq.(3.5) into Eq.(3.3) and collect the coefficients of𝐹𝑖 (𝑖 =

0, 1, ..., 5)and set them to be zero, we will obtain the following set of algebraic equations in the
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unknowns𝑎𝑖 (𝑖 = 0, 1, 2), 𝑓 and𝑔:



𝜎𝛼𝑎1( 𝑓𝑡𝑥 + 𝑔𝑡)𝛼 + 𝜎𝛽𝑎0𝑎1 𝑓 𝛽𝑝 + 2𝜎2𝛽𝑎1 𝑓 3𝛽𝑞 = 0,

2𝜎𝛼𝑎2( 𝑓𝑡𝑥 + 𝑔𝑡)𝛼 + 𝜎𝛽 (2𝑎0𝑎2 + 𝑎21) 𝑓
𝛽𝑝 + 16𝜎2

𝛽
𝑎2 𝑓

3𝛽𝑞 = 0,

𝑎1( 𝑓𝑡𝑥 + 𝑔𝑡)𝛼 + (𝑎0𝑎1 + 3𝜎𝛽𝑎1𝑎2) 𝑓 𝛽𝑝 + 8𝜎𝛽𝑎1 𝑓 3𝛽𝑞 = 0,

2𝑎2( 𝑓𝑡𝑥 + 𝑔𝑡)𝛼 + (2𝑎0𝑎2 + 𝑎21 + 2𝜎𝛽𝑎
2
2) 𝑓

𝛽𝑝 + 40𝜎𝛽𝑎2 𝑓 3𝛽𝑞 = 0,

3𝑎1𝑎2 𝑓 𝛽𝑝 + 6𝑎1 𝑓 3𝛽𝑞 = 0,

2𝑎22 𝑓
𝛽𝑝 + 24𝑎2 𝑓 3𝛽𝑞 = 0.

(3.7)

With aid of the symbolic computation systemMaple, we can find the following sets of solutions of

the system (3.7):

𝑎0 = 𝜆, 𝑎1 = 0, 𝑎2 = −12𝑘2𝛽 𝑞
𝑝
, 𝑓 (𝑡, 𝑧) = 𝑘,

𝑔(𝑡, 𝑧) = −
𝑘𝜎𝛽

𝜎𝛼

∫ 𝑡

0
(𝜆𝑝(𝑠, 𝑧) + 8𝜎𝛽𝑘2𝛽𝑞(𝑠, 𝑧))

1
𝛼 𝑑𝑠, (3.8)

where𝜆and𝑘are arbitrary constants.

In a recent paper by Zhang et al. [18-19], a set of five different solutions to Eq.(3.5) was introduced

as follows:

𝐹 (𝜉) =



−√−𝜎𝛾tanh𝛾 (−
√−𝜎𝛾𝜉), 𝜎𝛾 < 0,

−√−𝜎𝛾coth𝛾 (−
√−𝜎𝛾𝜉), 𝜎𝛾 < 0,

√
𝜎𝛾tan𝛾 (

√
𝜎𝛾𝜉), 𝜎𝛾 > 0,

√
𝜎𝛾cot𝛾 (

√
𝜎𝛾𝜉), 𝜎𝛾 > 0,

−Γ(1 + 𝛾)
𝜉𝛾 + 𝜔 , 𝜔 = const., 𝜎𝛾 = 0,

(3.9)

where the generalized hyperbolic and trigonometric functions [20] are expressed by the following:

tanh𝛾 (𝑥) =
𝐸𝛾 (𝑥𝛾) − 𝐸𝛾 (−𝑥𝛾)
𝐸𝛾 (𝑥𝛾) + 𝐸𝛾 (−𝑥𝛾)

, coth𝛾 (𝑥) =
𝐸𝛾 (𝑥𝛾) + 𝐸𝛾 (−𝑥𝛾)
𝐸𝛾 (𝑥𝛾) − 𝐸𝛾 (−𝑥𝛾)

,
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tan𝛾 (𝑥) = −𝑖
𝐸𝛾 (𝑖𝑥𝛾) − 𝐸𝛾 (−𝑖𝑥𝛾)
𝐸𝛾 (𝑖𝑥𝛾) + 𝐸𝛾 (−𝑖𝑥𝛾)

, cot𝛾 (𝑥) = 𝑖
𝐸𝛾 (𝑖𝑥𝛾) + 𝐸𝛾 (−𝑖𝑥𝛾)
𝐸𝛾 (𝑖𝑥𝛾) − 𝐸𝛾 (−𝑖𝑥𝛾)

,

where𝐸𝛾denotes the Mittag-Leffler function [20], defined by:

𝐸𝛾 (𝑦) =
∞∑︁
𝑗=0

𝑦 𝑗

Γ( 𝑗𝛾 + 1) .

We therefore obtain from Eqs.(3.9), (3.2), (3.6) and (3.8) three types of exact solitary wave solutions

of Eq.(3.1), namely:

• Four generalized hyperbolic function solutions (𝜎𝛾 < 0):

𝑢1 = 𝜆 + 12𝜎𝛾𝑘2𝛽
𝑞

𝑝
tanh2𝛾

(
−√−𝜎𝛾𝑘𝑥 +

√−𝜎𝛾𝑘
∫ 𝑡

0
(𝜆𝑝(𝑠, 𝑧) + 8𝜎𝛽𝑘2𝛽𝑞(𝑠, 𝑧))

1
𝛼 𝑑𝑠

)
(3.10)

𝑢2 = 𝜆 + 12𝜎𝛾𝑘2𝛽
𝑞

𝑝
coth2𝛾

(
−√−𝜎𝛾𝑘𝑥 +

√−𝜎𝛾𝑘
∫ 𝑡

0
(𝜆𝑝(𝑠, 𝑧) + 8𝜎𝛽𝑘2𝛽𝑞(𝑠, 𝑧))

1
𝛼 𝑑𝑠

)
(3.11)

• Four generalized trigonometric function solutions (𝜎𝛾 > 0):

𝑢3 = 𝜆 − 12𝜎𝛾𝑘2𝛽
𝑞

𝑝
tan2𝛾

(
√
𝜎𝛾𝑘𝑥 +

√
𝜎𝛾𝑘

∫ 𝑡

0
(𝜆𝑝(𝑠, 𝑧) + 8𝜎𝛽𝑘2𝛽𝑞(𝑠, 𝑧))

1
𝛼 𝑑𝑠

)
(3.12)

𝑢4 = 𝜆 − 12𝜎𝛾𝑘2𝛽
𝑞

𝑝
cot2𝛾

(
√
𝜎𝛾𝑘𝑥 +

√
𝜎𝛾𝑘

∫ 𝑡

0
(𝜆𝑝(𝑠, 𝑧) + 8𝜎𝛽𝑘2𝛽𝑞(𝑠, 𝑧))

1
𝛼 𝑑𝑠

)
(3.13)

• One rational solution (𝜎𝛾 = 0):

𝑢5 = 𝜆 −
12𝑘2𝛽Γ2(1 + 𝛾)𝑞

𝑝

((
𝑘𝑥 − 𝑘 (𝜆) 1𝛼

∫ 𝑡
0 (𝑝(𝑠, 𝑧))

1
𝛼 𝑑𝑠

)𝛾
+ 𝜔

)2 . (3.14)

Recalling the result stated in Theorem 2.4., and by virtue of Lemma 2.1, we know that there

exists𝑈 (𝑥, 𝑡) ∈ (S)−1such that𝑢(𝑥, 𝑡, 𝑧) = 𝑈 (𝑥, 𝑡) (𝑧)for all(𝑥, 𝑡, 𝑧) ∈ 𝐺 × 𝐾𝑟 (𝑞), where𝑈 (𝑥, 𝑡)is
the inverse Hermite transform of𝑢(𝑥, 𝑡, 𝑧). Consequently,𝑈 (𝑥, 𝑡)solves Eq.(1.1). Hence, for𝑃(𝑡) ≠
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0the white noise functional solutions of Eq.(1.1) are as follows:

𝑈1(𝑥, 𝑡) = 𝜆 + 12𝜎𝛾𝑘
2𝛽𝑄(𝑡)
𝑃(𝑡) tanh

�2
𝛾

(
−√−𝜎𝛾𝑘𝑥 +

√−𝜎𝛾𝑘

∫ 𝑡

0
(𝜆𝑃(𝑠) + 8𝜎𝛽𝑘

2𝛽𝑄(𝑠))�𝛼−1
𝑑𝑠

)
, 𝜎𝛾 < 0,

(3.15)

𝑈2(𝑥, 𝑡) = 𝜆 + 12𝜎𝛾𝑘
2𝛽𝑄(𝑡)
𝑃(𝑡) coth

�2
𝛾

(
−√−𝜎𝛾𝑘𝑥 +

√−𝜎𝛾𝑘

∫ 𝑡

0
(𝜆𝑃(𝑠) + 8𝜎𝛽𝑘

2𝛽𝑄(𝑠))�𝛼−1
𝑑𝑠

)
, 𝜎𝛾 < 0,

(3.16)

𝑈3(𝑥, 𝑡) = 𝜆 − 12𝜎𝛾𝑘
2𝛽𝑄(𝑡)
𝑃(𝑡) tan

�2
𝛾

(√
𝜎𝑘𝑥 +

√
𝜎𝑘

∫ 𝑡

0
(𝜆𝑃(𝑠) + 8𝜎𝛽𝑘

2𝛽𝑄(𝑠))�𝛼−1
𝑑𝑠

)
, 𝜎𝛾 > 0, (3.17)

𝑈4(𝑥, 𝑡) = 𝜆 − 12𝜎𝛾𝑘
2𝛽𝑄(𝑡)
𝑃(𝑡) cot

�2
𝛾

(√
𝜎𝑘𝑥 +

√
𝜎𝑘

∫ 𝑡

0
(𝜆𝑃(𝑠) + 8𝜎𝛽𝑘

2𝛽𝑄(𝑠))�𝛼−1
𝑑𝑠

)
, 𝜎𝛾 > 0, (3.18)

𝑈5(𝑥, 𝑡) = 𝜆 −
12𝑘2𝛽Γ2(1 + 𝛾)𝑄(𝑡)

𝑃(𝑡)
((
𝑘𝑥 − 𝑘 (𝜆) 1𝛼

∫ 𝑡

0 (𝑃(𝑠))�𝛾
−1
𝑑𝑠

)�𝛼
+ 𝜔

)�2 , 𝜎𝛾 = 0. (3.19)

4 Conclusion

In this paper, Hermite transform, white noise theory and Fractional Riccati equation method are

applied successfully for constructing some white noise functional solutions for the Wick-type

stochastic fractional KdV equations and a new family of exact analytical solutions for the fractional

KdV equations with the modified Riemann-Liouville derivative. The obtained results include

generalized hyperbolic function solutions, generalized trigonometric function solutions and rational

solutions. The method which we have proposed in this paper can be used for solving other nonlinear

stochastic fractional partial differential equations with nonlinear terms of any order. Also, we have

only discussed the solutions of stochastic fractional KdV equations driven by Gaussian white noise.

There is a unitary mapping between the Gaussian white noise space and the Poisson white noise

space, this connection was given by Benth and Gjerde [21]. Hence, with the help of this connection,

we can derive somePoissonwhite noise functional solutions, if the coefficients𝑃(𝑡), 𝑄(𝑡)are Poisson

white noise functions in Eq.(1.1). We note that as 𝛼 → 1, all the obtained results give a new set

of exact analytical solutions for the well known Wick-type stochastic KdV equations. All solutions

obtained in this paper have been checked by Maple software. Moreover, we observe that we can

get different solutions for different forms of the coefficients 𝑃(𝑡) and 𝑄(𝑡).
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