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Abstract
In this paper, we show that &, has a lower bound and is utmost equal to the sum of
norms of P and Q and also that 5,  is Hermitian and is bounded above by its numerical
radius. Finally, we give power bounds for numerical radii of the 65 4.
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1. Introduction
Studies on the norm of inner derivations lead [1] to introduce the idea of S-universal operators and
criteria for the universality for subnormal operators i.e. an operator T € B(H) suchthat|l §,| 7 Il
= 2d(T), for each normideal = in B(H) and d(T) = inf,.{ll T — A lI}. In [2] it was established
the relationship between §,, 6, and 6,, on B(H) where the operators T and P are S-universal. To
be precise; supposing that T,P € B(H) are S-universal, then || §,,| B(H) I < i(ll 6r| BCH) |l
)+ 11 6p| B(H) lland the norm of a generalized derivation implemented by two S-universal
operators is less than or equal to half the sum of the norms of inner derivations implemented by
each operator [3]. The norm of a derivation &, as a mapping of B(H) onto itself is given by inf
I T — Al |l [4]. Kadison, Lance and Ringrose [60] showed that if T is self-adjoint and §; maps a
subalgebraof B(H) into B(H), then || §, Il = inf{2 I T — A" |l: A" € 8} where 8'is the commutant
of the subalgebra 8 c B(H). In[5] the author used an example of a self-adjoint operator to show
that the hypothesis that (6(6) < 6) is inessential, taking 6 to be the subalgebra of diagonal
matrices with 8 = 6. Later on, Bonyo [6] investigated the relationship between diameter of the
numerical range of an operator T € B(H) and norms on inner derivations implemented by T on
the norm ideal, and further considered the application of S-universality to the relationship. The
relationship in [7] determined using the fact that a generalized or inner derivation is an operator
and as such, one can calculate its numerical range as well as the norm whenever applicable. Indeed,
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it was noted in [8] that for any operator T € B(H) and norm ideal t in B(H), diam(W (T)) <l
&, T Il where 'diam’ is the diameter. Furthermore, it was shown that if T € B(H) is S-universal,
and 7 a norm ideal in B(H), then diam(W(T)) <Il 6, ]| t IIl. In [8], Rosenblum determined the
spectrum of an inner derivation, §, = TP — PT. Kadison, Lance and In [9] the author investigated
derivations &, acting on a general C--algebra and which are induced by Hermitian operators. But
[10] studied a derivation &, acting on an irreducible C--algebra B(H) for all bounded linear
operators on a Hilbert space H. The geometry of the spectrum of a normal operator T was used in
[11] to show that the norm of a derivation is given by || 6, | = inf{2 I T — A ||l: A € C} using the
geometry of the spectrum of normal operator T. However, [12] raised the question on the ability
to compute the norm of a derivation on an arbitrary C*-algebra. Research of [13] later used the
density theorem to prove that the extension of derivations of a C*- algebra to its weak-closure in
B(H) [14] is achieved without increasing

norm. In [15] the study computed the norm of a derivation on a von Neumann algebra. Specifically,
it was shown that if ¢ is a von Neumann algebra of operators acting on a separable Hilbert space
Hand T € ¢ and ¢, is the derivation induced by T, then || 6, | ¢ I| = 2 inf{T — Z : Z € C} where
C is the center of ¢ [16]. Given an algebra of bounded linear endomorphisms £(X) for a real or
complex vector space X, it was shown that for each element T € L(X), an operator §,(A) =
TA — AT isdefinedon L(X)and || &, Il < 2 inf, || T + Al |I. Furthermore if Xis a complex Hilbert
space then the norm equality holds [17]. Also [18] used a method which applies to a large class of
uniformly convex spaces to show that this norm formula does not apply for #*and L"(0,1), 1 <
p < o, p # 2. For L' spaces, the formula was proved to be true in the real case but not in the
complex case when the space has three or more dimensions.

The derivation constant K (A) has been studied for unital non-commutative C*-algebra A [19]. In
[20] the author studied K(M(A)) for the multiplier M(A) for a non-unital C*-algebra Aand
obtained two results; that K(M(A)) = 1if A = €*(G) for a number of locally compact group G
and K (M(A)) = :if G is (non-abelian) amenable group. However, [21] showed that in both finite
and infinite dimensional vector spaces, the norm of a generalized derivation is given by || §,, II=
Al + 1l Bl forapair A,B € B(H). In [21] and [22], the authors showed the necessary and
sufficient conditions for a derivation &, to be norm-attainable. Several other results exists on the
inequalities of derivations and commutators on C--algebras. For instance [1] used a polar
decomposition T = UP of a complex matrix T and unitarily invariant norm |[||.||| to prove the
inequality Il [UP — PUJ2IN<I |T'T—TT |I<IUP + PU |l UP — PU |. Williams
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[79] proved that if a commutator TX — XA = al is such that A is normal, then the norm relation
Il I —(TX—XT) =11 holds. Anderson [2], generalized Williams inequality and proved that
| P—(TX—XT) =1 P I.Later, [7] proved that if T and P are normal operators, then I — (TX —
XP) =1l I |l. The norms of derivations implemented by S-universal operators have been shown to
be less than or equal to half the sum of inner derivations implemented by each operator in [7] and
in particular was proved that, I 6, Il <-(Il §,, I + 116, 1) and | §,_,,, 1< (1S, I +1I
&,_, ). Using unitaries and non-orthogonal projections, Bhatiah and Kittaneh [5] determined max-
norms and numerical radii inequalities for commutators. Some authors have used the concept of
classical numerical range to study different classes of matrices of operators. For instance, many
alternative formulations of (p, q)-numerical range Wy, q(A) = {E»((UAU")[Q]) for a unitary U
where 1 < p < g < nforann x ncomplex matrix X, with g x g leading principle submatrix X{q]
and the p: elementary symmetric functions of the eigen values of Xiq) [8]. In [7] the author
extended the results of these formulations to the generalized cases, gave alternative proofs for
some of them like convexity and even derived a formula for (p, q)- numerical radius of a derivation
as7, (T) = max{| u|: u € Wp,q(T)}. In [14] applied positive operators in the proof of a similar
result. Orthogonal projections being bounded operators, have extensive uses on implementation of
derivations and construction of underlying algebras of the derivations. Vasilevski [76] studied the
applications of C*-algebras constructed by orthogonal projections to Naimark’s dilation theorem.
In [22] the author used orthogonal projections to induce a derivation on von Neumann algebras.
In [9] the researcher used mutually orthogonal projections acting on a C-algebra to prove that any

local derivation is a derivation.

2. Basic definitions
Definition 2.2.0. An elementary operator T € B(H) is said to be norm-attainable if there exists a unit
vector x, € H,suchthat |l Txy) =T I
Definition 1.21. A Hilbert-Schmidt operator T with orthonormal basis {e;: i € I} has a Hilbert-Schmidt
norm || I, is defined by | T ll, = (Sie; Il Te; I17)
Definition 2.2.1. Let Hn denote the complex vector space of all n X n Hermitian matrices, endowed with
the inner product (4, B) = Tr(B*A), where Tr(.) is the trace on the positive matrices and B* is the adjoint

of B, then:
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(i). the trace norm of T, is defined by, | T 1= X1 s:T -

(ii). the spectral norm of T, also is defined by, | T I| 2 = max{s;T}, where siT are the singular values of
T, i.e.the eigenvaluesof | T | = (T*T);
Definition 2.2.2. A tensor product of H with K is a Hilbert space P, together with a bilinear mapping ¢ :
H x K — P, such that

(i). The set of all vectors @(x,y)(x € H, y € K) forms a total subset of P, that is, its closed linear span is
equal to P ;

(iN). (@(x1, y1), @(X2, ¥2)) = (X1, X2)X(y1, y2) forxy, x; €H, y;, y, €K.

We refer to the pair (P, ) as the tensor product.

Remark 2.2.3. Let X, X’,Y and Y’ be vector spaces over some fieldsand P : X +— X',andQ: Y+— Y'be
operators. Then there is a unique linear operatorP © Q: X® Y —» X' ® Y ' defined by
POQXKRY)=PX)Q®Qy), VxeX, y €Y.Thefunctionf: XxXY — X' ® Y'defined by
f(x,y) = P(x) ® Q(y) is bilinear and so by the universal property of tensor products, there exist a unique
operator P © Q for which the above equation holds. The map P © Q is called the tensor product of P
and Q.

3. Main Results

Lemma 3.0.0. Given that P, Q, X € B(H) are matricial operator on a finite dimensional separable Hilbert
space H™ then PX — XQ is also matricial.
Proof.
Let [p;], [q:j] and [x;;] denote the matrices of the operators P, Q and X respectively. Suppose that v; =
v4,..., v, forms a basis of H" over a field KK, then a simple computation shows that for
P —-Quvi=Pv—Quv

= XjPiyvj = XjqiY)

= Xi®ij — qi))v;
which can also be written more compactly as ), i Vijvj where y; ; 1s the finite difference p;; — q; jfor every i
and j. Foragiven A € K then it is also clear that A[p;;] = [Ap;;]. We adopt the order v; T (instead of
Tv;) for the image of an arbitrary operator T which acts on H,, for v; € H,. Thus, v;TX = (v;T)X =
&jpijv; X = Xjpij(vj X). Butv;X = ¥ x;,v) and so by substituting in the equation above yields
vi(PX) = Y pij Ok xjkvk) = Xk (pijxjx)vk so that [PX] = a;; where for eachi and j, a;; =

Zk DijXjk- Thus, we can also find Bl] = Zi Xjk Qki so that )/,i]' = a;; — ﬂl] = kal-jx]-k — Zi XjkQri-
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Theorem 3.0.1 Let§ : B(H) — B(H) be a generalized derivation defined by 8p o(X) = PX — XQ for
orthogonal projections P and @ induced by g, then Il 6p Il = {X] p IZ}% -l qn |2}% and ||
SpoX)N=TPINXT—1UXIIQI

Proof.

Taking ||f|l = 1 for afixed P,Q € Py(H) then 6p o(fn) = Pfn — fnq. Suppose that p,, and q,, which
induce P and Q respectively are bounded, then 6pfn = pf, — f,q can take the form of a diagonal

matrix and Y., (pnfn — fnqx) 1S also bounded. Now
Il 6p,o(fr) 12= 1l X2n@nfon = faan) I?

2l Xn Pofo IP= 1 Zn @ufin 112

= al oal? I fo 2= Xnl qn 12 1l fo 112

= {(Zalpn > = Zal @ PHZn I £ 17}
so that on taking the supremum over both sides of the inequality gives
sup{ll Pfo = Q@ I: 1l fu =13 =11 8p o (f) |

> (S Ipn 122 — (T ln 1252

Conversely the following relation hold
U Za@ufn — fud) W2 < {(Zn [pn 197 = (B | @n 1232} (2 I £ 1202
Which implies that the following also hold.

{" Zn(pnfn _ann) "} = {Zn |pn |2 I fn "2 - Zn |qn |2 I fn ”2}
= Xl Pufn "2_211 Il gnfn "2}

= {” Zn (pnfn - ann) "}
S0

sup{ll Pfp — fnQ Il: Il fo =1} =1l 8p,o(fn) Il and for an arbitrary X € B(H), then for X = Y}, X, f,,
I 6p.0(0) = (S0 Il P IN2(En | XS 1232 = (S | Xfo 1292 (B 1 g 132

=0PIEX =X 0mel
The following is a discussion of the norms of derivations in the context of tensor product of operators. We
show that indeed & P,Q is linear and bounded in this context.
Remark 3.0.2. Suppose that H = #2 is infinite dimensional complex Hilbert space, then #2 is unitarily
invariant to the Hilbert space tensor product #? @ #? Let P € (H", H,), Q € B(H™, H,) and an
arbitrary X : H™ - H™ for H® = H, @ H, = Hy; @ H,,. There is a unique linear operator P © X €
B(H™ ® H™, H; @ H,), called the tensor product of P and X satisfying (P O X)(x ® y) = P(x)
X(y) and similarly (X © Q)(y ® x) = X(y) ® Q(x). Moreover, there is a unique injective linear
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operator 6 : B(H™, H;) @ B(H"™, H;) —» B(H" @ H,),B(H™ ® H,) which satisfy 6(P X — X ®

Q) =POX-X0OQ.

Theorem 3.0.3 Let P € B(H™, H;), Q € B(H"™, H,) and an arbitrary X : H" - forH* = H; @ H, =

Hy1 @ Hy; then 6p g is linear and bounded.

Proof.

By the definition of derivations, the map §p o(X) = P®X -X® Q: B(H; ® Hy;) » (H, ®

H,,) is defined by

POXCLix Qyi)—X OQQRL 1y ®x) =X P(x) @ X(yi) — Zit1 X () ® Q) for

allx € H". Leta, BeFand YL x; Qy; , 2t 1x's @Yy € H @ Hyq.

Then

POX-XO Q(a Yic1xi Qyi - Xit,x'y ®yli) =POX-XOQ(aXixi Qy;)+
(B Xiax's ®Y')

POX-XOQ@XIh,x Qy)+ P OX-X OQBIL1x's ®y';)

POX(@Xiix Qy)-XOQaY;x ® }2) +P @X(ﬁz?=1x’i X y,i )‘

XOQ® )Y i ®Y,
i=1

= @) P ®X() —a ) XG) ® QU +F ) P ®X(y')—F ) X(x') @ (') aP
i=1 i=1 i=1 i=1

@X<zn:xi ®}’i>—aX@Q<Zn:xi ®Yi)+ﬁP@X<zn:x'i ®}"i>—ﬁX

i=1 i=1 i=1

OQ(ix’i ®y’i>

i=1

=aP OX —X OQ)(Z% Qyi) + P OX —X O ) x'y @y")
i=1

i=1
Now for the case of boundedness,
(P OX-X OQ)aXiiixi ®yi) = X P(x) @ X(¥i) — Lit 1 X(x) ® Qi )l
<SI Y Px) @ X(yy) — 2  X(x) ® Qi) |l
SHEE PO X)) I HI X, X(x) @ Qi) |l
S DYEVICHR I D(CHN RPN EP(EHN TP CHY
<Xy P Ce) IEX I Qr)+I X7y X Ce) QN
yill
SHPIIX IEEE, Ny DHNXMQ I X5y I xy; |
= (TPINXI+NXUNQI)XEq I Iy Il
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Letting (NP X 1+ X I Q ) = M, thus M is the upper bound for PX — XQ
Theorem 3.0.4. Let X € B(H) and orthogonal projections P,Q € B(H)then[|P O X =X O QI =l
PAEX I —=1EX 1 Q.

Proof.
IPOX -X OQI= sup {llZ(xi Ry)lI=11P OX —X OQ(in Qi) ||}
i=1 i=1
<sup{ll X0 @y ) I=1IP XM Cryx Qy ) I =IX1IQ I
I Ceix @y YL x ®y; I}
=0PIIXN=IXMIQI
Conversely,

IPOX -XOQI=supllP OXELix; ®¥)—X OQELx ®y) IVIL;x; ®y; €
X Y} and Z?=1xi ®yl) * 0.
Thenl POX -XOQ Il > { 1P OX 21 %i B )X O 5 BV yym v @y, € X ® Y}

I, % @yl
and Y x; @y )= 0=1PIIX I =1X 1l Q I
Thus [P OX =X O Q I=IP X I =1l X 1l Q .

In the sequel, we will consider inequalities for the norms of derivation discussed. The inequalities
considered will be on generalized derivations and the results generalize to the cases of inner derivations.
Theorem 3.0.5. Suppose that P, Q € P,(H) are matricial operators, then Il 5 o (X) II°=

1 1

= = 1
%o Xh=a Ipixiy — x5, Y=y T %o Xh=n Ipixy — %454, Yizjioy T (X%211q)x3512)>
on @ Hj
Proof. Suppose that P and Q are positive diagonal n x n matrices with eigenbases p,, and gn respectively

forn > 1, withp,(1 —p, ) = 0and g,,(1 — g5, ) = 0. Given arbitrary X € B(H), then,

pr 0 O g 0 0 X11 X12 %13
P=10 p, OI,Q = [0 q 0] and an arbitrary X = [X21 X22 x23],With p1 = p, = 0 then
0O o0 O 0 0 0 X31 X32 X33
P1X11 — X11P1 P1X12 — X12P2 P1X13
PX — XP =|P2X21 —X21P1 D2X22 — X22P2 P2x23]
—X31P1 —X32P2 0
P1X11 — X11P1 0 0 0 P1X12 — X12P2 P1X13
=[ 0 DP2X22 — Xp2P2 O+ | P2X21 — X21P1 0 P2x23]
0 0 0 —X31P1 —X32D2 0
So that for a commutative B(H) then
0 P1X12 — X12P2 P1X13
PX — XP =|p2X21 — X21P1 0 szzsl-
—X31P1 —X32D2 0
Now
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P1X11 T X11P1 P1X12 + X1202  P1X13
PX + XP =|D2X21 t X21P1  DP2X22 + X222 P2x23]
X31P1 X32P2 0
P1X11 + X11P1 0 0 0 P1X12 + X12P2  P1X13
= [ 0 DP2X2p + X202 O + [ P2X21 + X211 0 p2x23]
0 0 0 X31P1 X32D2 0
and

q1X11 —X1191  q1%X12 — X1242 {q1X13
QX —XQ =|92X21 —X21q91 Q2X22 — X222 (2X23

—X31q1 X322 0
d1X11 — X11G1 0 0 0 q1X12 —X12q2  q1%13
:[ 0 Q2X22 — X22q2 O]+ | q2X21 — X21q1 0 q2x23]
0 0 0 —X31q1 —X32q> 0
Similarly for a commutative B(H) then QX —XQ =
0 q1X12 —X12q92 q1%13
q2X21 — X21q1 0 Cszzsl .
—X314q1 —X324q2 0

Now
q1X11 T X1191  q1X12 T X1292  q1%13
QX + XQ =|g2x21 + X211 q2X22 + X22q2  (q2X23

X31q1 X322 0
q1%11 T X11q1 0 0 0 q1X12 t X12q2  q1%13
= [ 0 Q2X22 + X229, O + | q2Xx21 + X214 0 QZx23]
0 0 0 X31q1 X32q> 0
We obtain an operator
P1X11 — X1191  P1X12 — X1242 P1X13
(PX —X0Q) = [szm —X21q1 P2X22 — X22q> 0 ]
—q1X31 —(2X33 0
P1X11 — X111 0 0 0 P1X12 — X12q2 P1%13
= [ 0 P2X22 — X22q2 O] + | P2X21 — X21G1 0 0 ]
0 0 0 —{q1X31 —(q2X32 0

Now on introducing the norm function to the equality results into the

norm inequality;

P1X11 — X1191  P1X12 — X12q2  P1%¥13 D1X11 — X1191 0 0
P2X21 — X21q41  P2X22 — X2242 0 ] < [ 0 DP2X22 — X225 O]
—q1%31 —{q2X32 0 0 0 0
0 P1X12 = X12q2 0 0 0 0
||| P2X21 — X211 0 0] - [ 0 0 O]
0 0 0 —q1X31  —Q2x32 0

Application of Hilbert-Schmidt norm to this, gives us the following
1

1 1 1
X% o1 Xh=1 Ipixiy — x5, Ya=jpy + X% o1 Xh=n Ipixy — x5 Ya=jiop + (X%-11qx3512)z2
Lemma 3.0.6. Let P € Py(H) and X is compact, then s;(PX) = s;(XP) < X Il s;(P)
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Proof.
sj(PX) = s;(XP) is immediate from the commutativity of the singular values and s;(XP) <Il X |l s;(P)

follows from the correspondence s;(.) =II. II, and the inequality, ||| PX [[| <Il P Illl X II.

Theorem 3.0.7. Let B(H) be a C* —algebra, Po(H™) a commutative subalgebra of B(H) and a map Jp g,
such that 6p o : Po(H™) > B(H). Let 6p o : My(Po(H™)) —» M, (H™) be a linear map between matricial
operator spaces M, (Po(H™)) and M, (H™). For n-tuples of &p,, Whereby &, : M,[Py(H™)] —
Mn[B(H)], then Sx[(P, @] = [6(P,Q)],VP,Q € Mp[Po(H™)] and [P] = [P, P,], [Q] =
[Q1, Q2] Moreover, [| 8p o lI<Il 8p g llcp holds.

Proof.

We apply diagonal matrices [P] and [Q]. For n = 1, then by definition of §,,, §; and § are coincidental
[20] hence, |l § Il = Il 51II. We now proceed to give proofswhenn = 2andwhenn = 3.Forn = 2, let

[P],[Q] € My[Py(H™)),j, k = 1,2,then for &,: My[Py(H™)] = M,[B(H)], we now have,

52,0 = 5 (|7 gﬂﬁikﬂﬁﬁl% o)

[t e
0 P,X —XQ,
— [6(P1,Q1) 0 and
0 6(P2'Q2)

5 2l d-To W6 aDl=II™ 0™ 2xel

1
0 é\(F’zsz)

= [ 32,52, 1 6((P, Q) IP]: (Hilbert-Schmidt norm)
= (I 6((Py, Qu) 12+ 8((Py, Q) 1)z

> Il 5((P, Q1) IPT:

=11 6((P, Q) I

=11 6:((P1, Q1) .

Therefore,
Il 8, Il = sup{ll6,(PQ) : [PQ] € My[Po(H™)II}
= sup{ll 6:((P1, Q@) I} =16, I

and hence Il 6, Il =1l &; Il.
P.X -XQ, 0 0
When n = 3, 63 0 P,X -X0Q, 0
0 0 P;X — XQ5
6(P1»Q1) 0 0
= [ 0 5(P2,Q2) 0 ‘
0 0 6(P3;Q3)

Page 9



Pure and Applicable Analysis 2022, 2022: 2 https://www.lynnp.org

which implies that

P,X — X0, 0 0 S(Puop) 0 0
8s 0 P,X — X0, 0 _ 0 8pyoy O
0 0 PsX — XQ5 0 0 Opon

1

= [ 231 Zh=1 N8P, Q) I7]2
= (I 6((P1, Q1) 1% +1 6((P3,Q5) 1% +
I 5((Ps, Q3) I7)2

1

=[ X1 Thon 16((PL Q) 172
=1 6([6((P;, QD II.
This implies that
I 83 Il = sup{ll 65[8((P;, Q)]+ [6((P, Q)] = M3[Po(H™)] I} = sup{ll 62[6((P;, Qx)] :
[6((P;, Q)] = Ma[Po(HMII} =162 1l
and therefore, || 53 | = Il 8, II.
Lastly, consider 6,41 ¢ Myyq[Po(H™)] = My 1[B(H)] defined by 6,11 [6((P;, Qx)] = [6((P}, Qr)] for
alljk = 1,...,n+ 1.
We obtain,
I 81 [(PQ) i) =11 [6(PQ) ] I
=[S 8P Q) 17T
(S0, Siy 18((P, Q) IP:
=11 8,[6((P;, Qi)] 1.

Therefore, on taking supremum on both sides of the inequality above we get || 8,41 I =11 &, Il

v

Application of the property of complete boundedness of the norm of 3, we further get Il § llcg = sup{ll
6p Il :n € N}which impliesthat | § llcg =1l 8, | Vn € N. Therefore, || § | =1l 6 g, this completes
the claim.

Example 3.0.8. Let § : M,(C) — M;(C) be a derivation defined by 6p o (X) = PX — XQ. Letan
operator P, be defined by P(e;) = e; on a finite dimensional Hilbert space H, for an orthonormal basis
e,j = 1,2....

We can then set the matrix for an arbitrary operator X and that of P as,

- N

It is clear by simple calculation that
PX — XP = [el X171 —x11e10 e xqy
—X21P1 0
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Now suppose that H has a unique direct decomposition given by H = ranP @ kerP and e, isan

. . . 0
identity in the range of P, then PX — XP becomes PX —XP =|__ ~ “1 312
—A21€1

. We can find a unitary

U= [e1 0 ]such that
0 —e

0 €1 X12

1
[—x21e1 12| = Lwx —xu)

= (UX —XU")
By triangle inequality,
1 1 1 1
SIHUX = XU) IS (UX+XU) IS S I UX I+ I XU =1 XU =1 X 1.

Now considering another operator Q similar to P, we can get another orthonormal basis f;,j = 1,2...
such that Q is defined by Q = [f6 8]

Letalso | X Il = {X,] ap |2 }% =L IPXII= (e IZ}% =PIQXII={If; IZ}% =Qandsoll
PX —XQ I<I PX +XQ Il <Il PX Il +II XQ II.
Lemma 3.0.9. Suppose that for an arbitrary X € B(H) and P, X, P,X, XQ,, XQ, € C, then,
nPAYE P ID<I ¥Eo, PiX; ID<Il PiX; 115 for 0 < p < oo and the reverse inequalities hold for 1 <
p < oo,
Proof. If a; and a,, are nonnegative real eigenvalues for P; and P,, then
nP 1Y el < (B a; )P < ¥, al. The inequalities follow, respectively, from the concavity of the
function f(t) = tP, t € [0,00) for 0 < p < 1, and the convexity of the function f(t) = tP, t €
[0,00)for1 < p < oo.
Proposition 3.1.0. Let P = P;, P, Q = Q4, Q; € C, and an arbitrary X = X;, X, € B(H) for some
p>0.Then¥?, i | PX; — PiX;llp+ XF,-1 Il XiQ; — X;Qi lpp + X80 1 X — X 152

p=2 p=2

p-2 p-2 b=z
(Dpy_xoXij=1 | PiXi = X;jQj g+ D> 37 j1 I XiQi — Xj g+ Dy 2 p 25y 11 Xi — Py Xj 11p) —
(X7 o1 (PXi — X;Q0) I+ X7o, (X0 — X)) 15+ $2o, (G — PX) I5) for0 < p < 2.
Proof.
We define aconstant Dp by Dp = Y\I-, m(P;X;) where

1, (P;X;) # 0;

2 YY) =) i ’

Zi=1n(PLXl) {0’ (Ple) — 0’

and Dp = Y2, n(X;Q;) where
_ 1' (XlQl) * 0:
We prove the case for 0 < p < 2 and infer the result onto the other cases. We have Zﬁ =1l
PXi - X;Q; Iy + 2721 11 X;Qi - X;Q; Iy + X7 o1 1 X; — X; I+ (I XFoq (PX; — X:Q) 1y +1I

I 371 (XiQi = X)) I+ Ty (Xi - PX) 15) = 2(Ti<icjcz | PiXi — PiX; I+ Ticicjcr |
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XiQi - X;Q; o+ Ticicjer 1 Xi = X5 15) + (I 21 (PX; — X;Q) Ip+1 X721 (X:Q: — Xp) I+
121 (X — PX) IB) = 2(Cicicjea || PXi = PXGI2 1002 + Bicicjez |1 XiQ — X,Q12 1575 +
Sicicj<e 11X = X172 1205) + (1 S20 | PX; — XiQul? W)+ 520 (XiQs — XDI 1273 +

I S240 X = PXil? 1272) 2 [Sacicjcal PiXi = PXG2 + Bacicjeal X:iQ: — X057 +

21 1P = X0 P + [Sacicseal Xi0 = X051 + TacicjealXi — X1 + T (X0 —
XORI + [ SacicjcalXi = X2 + Sacicjcal PXe = BX;1? + 52l X = P2 =

[ z%-,- P = X0 P 4 115% o Xe0e — X122 P>

D #P% + Dgg Zhmillne - 5Pl o; sz i -
P[P = Diy g Xl Pi— Q1) + D; CoxZi el X0 = X7 + D 387 Xi - px|I?
Proposmon 3.1.1. Let Py, P,,Q,,Q, € Cpforsomep > 0. Then 3.7, ||P.X; — PJ-X]-||p

SFj=allXiQi = X010 = 2277238 P = X417 — 2]|Z%0 (PX: — X @)[} for 0<p < 2.

l DEIR PXI Iz

2X XQ Zzlj=1|| P X; — XQJ

p/2

Proof.

p-2 p-2 p-2
p—2 p—2 p p—2
We set D ZXZ” 1 = 2Dy B IXQill}, Dy pXE i1 ||X: —Pij|| =2D,% T4 IIPX;lIp.
p-2

Now 0 <Z?j 1 ”P'X' —P-X-||p+2?j 1||X'Qi_Xij||z_ PX XQ Zl} 1||PX Xij”Z -

p-2
p
2<DXQ S XU+ Dy Tt 15X, n”) + (SR - %005 + 2 xi|) +
2

||2?=1Pixi||z) = 33j=allPX = B + a1 - X501 ZDp;Z( _xo Zei=[IPXe = X051 +

p
2|52 P — XiQ) +(D,,; xeXii=1llPiXi = Q)| — i (PiX; —Xin-)z) +
» p=2 p-2 p-2
(Il - 255 Sl ) + (zleuxioiug ~ a0 z%ﬂnxioinz).upz(z 52,0 lPux; —

X'Qj“p _||Z?=1(PiXi _XiQi)” = sz XQZL] NPX: —X;041° || — |z X —

X,Q;2 ||"/2

p/2

-1
Since 2D2 is greater than or equal to 1, we deduce from lemma 4.20 that ||¥7, PL-XL-||Z -

p/2

ZDZ 'S2IPX R < >z, Px; || -2 xPlE< 0

E
Similarly, we have ||¥2, Xl-Ql-|| < 2D.% Y74 11X;Q;lI5. It therefore implies that Y7, ||P.X; —
2

BX|IT + 22 jmallxie — X504 2 ZDP}Z( _xo =1 [XiQ@i = X017 = 2|ZE (P - Xi@)I} 2
220252 Pk - X0, RN = X,Q)[7 = Dpx—xo.
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4. Conclusion
In this paper, we have shown that the norm of a derivation, induced by orthogonal projections via
tensor product is linear, bounded and continuous. Furthermore, we have inequalities of such a

derivation induced by n-tupled orthogonal projections.
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