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Abstract

In this paper, we prove the existence and uniqueness of weak solution to a strongly nonlinear

degenerate elliptic problem of the type:

−div
[
𝜔1𝑎(𝑥,∇𝑢) + 𝜔2𝑏(𝑥, 𝑢,∇𝑢)

]
+ 𝜔3𝑔(𝑥)𝑢(𝑥) = 𝑓 (𝑥).

Here, 𝜔1, 𝜔2 and 𝜔3 are 𝐴𝑝-weight functions that will be defined in the preliminaries, where,

Ω is a bounded open set of R𝑛 (𝑛 ≥ 2) and 𝑓 ∈ 𝐿1(Ω), with 𝑏 : Ω × R × R𝑛 −→ R,

𝑎 : Ω × R𝑛 −→ R and 𝑔 : Ω −→ R are functions that satisfy some conditions and 𝑓 belongs

to 𝐿 𝑝′ (Ω, 𝜔1−𝑝
′

1 ). First, we transformed the problem into an equivalent operator equation;

second, we utilized the Browder-Minty Theorem to prove the existence and uniqueness of weak

solution to the considered problem.

Keywords: Strongly nonlinear degenerate elliptic equations, Browder-Minty theorem, Dirichlet

problem, Weighted Sobolev spaces, Weak solution.

1 Introduction

Let Ω be a bounded open subset in R𝑛 ( 𝑛 ≥ 2), 𝜕Ω its boundary and 𝑝 > 1 and 𝜔1, 𝜔2 and 𝜔3
are a weights functions in Ω (𝜔1, 𝜔2 and 𝜔3 are measurable and strictly positive a.e. in Ω).
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In this paper, we consider the following problem:
L𝑢(𝑥) = 𝑓 (𝑥) in Ω,

𝑢(𝑥) = 0 on 𝜕Ω,
(1)

where L is given by

L𝑢(𝑥) = −div
[
𝜔1(𝑥)𝑎

(
𝑥,∇𝑢(𝑥)

)
+ 𝜔2(𝑥)𝑏

(
𝑥, 𝑢(𝑥),∇𝑢(𝑥)

)]
+ 𝜔3(𝑥)𝑔(𝑥)𝑢(𝑥), (2)

with 𝑓 ∈ 𝐿1(Ω). Furthermore, the operators 𝑎 : Ω × R𝑛 −→ R and 𝑏 : Ω × R × R𝑛 −→ R are

Carathéodory function satisfying the assumptions of growth, ellipticity and monotonicity, and the

nonlinear term 𝑔 : Ω −→ R is a positive function.

In the past decade, much attention has been devoted to nonlinear elliptic equations because of their

wide application to physical models such as non-Newtonian fluids, boundary layer phenomena for

viscous fluids, chemical heterogenous model, celestial mechanics and reaction-diffusion problems

(we refer to [4,9,27] where it is possible to find some examples of applications of degenerate elliptic

equations). One of the motivations for studying (1) comes from applications to electrorheological

fluids (see [24] for more details) as an important class of non-Newtonian fluids.

Many scholars have examined equations like (1), where 𝑎(𝑥,∇𝑢) ≡ 𝑔(𝑥) ≡ 0 and𝜔1 ≡ 𝜔2 ≡ 𝜔3 ≡ 1

(see [8, 22] and the references therein). The degenerate case with difierent conditions haven been

studied by many authors (we refer to [1, 5, 6, 20–23] for more details).

Recently, Drábek and al. [10] proved that under some additional assumptions on 𝑎 and ℎ, the

problem −𝑑𝑖𝑣(𝑎(𝑥, 𝑢,∇𝑢)) = ℎ has a solution 𝑢 ∈ 𝑊
1,𝑝
0 (Ω, 𝜔). Moreover in [7], the author proved

the existence of solution for Problem (1), when the nonlinear term 𝑔(𝑥) ≡ 0.

Our goal in this research is to study (1) in𝑊1,𝑝0 (Ω, 𝜔1). Wewill use theBrowder-MintyTheoremand

the weighted Sobolev spaces theory to prove that (1) has a unique weak solution 𝑢 ∈ 𝑊
1,𝑝
0 (Ω, 𝜔1).

In terms of our Problem’s existence, there aremany difficulties associatedwith this kind of problems.

Firstly, the operator L can not be defined from 𝑊
1,𝑝
0 (Ω, 𝜔1) into its dual space [𝑊1,𝑝0 (Ω, 𝜔1)]∗.

The second difficulty is establish the relationship between 𝜔1, 𝜔2 and 𝜔3, in order to ensure the

existence and uniqueness of solution for Problem (1).

Let us speedily summarize the work’s contents. In Section 2, we provide some preliminary

information as well as certain lemmas. In Section 3, we specify all of the assumptions on 𝑎, 𝑏, 𝑔
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and we introduce the notion of weak solution for the Problem (1). The main results will be stated

and proved in Section 4. Section 5 contains an example that exemplifies our principal result.

2 Preliminaries

In this section,we give some preliminaries facts which are used throughout this paper. Monographs

by J. Garcia-Cuerva and J. L. Rubio de Prancia [14] and A. Torchinsky [25] have comprehensive

expositions.

Let 𝑣 be a weight function in R𝑁 , that is 𝜔 measurable and strictly positive a.e. in R𝑁 . For

1 ≤ 𝑝 < ∞, we denote by 𝐿𝑝 (Ω, 𝑣) the space of measurable functions 𝑢 on Ω such that

| |𝑢 | |𝐿𝑝 (Ω,𝑣) =

(∫
Ω

|𝑢(𝑥) |𝑝𝑣(𝑥)𝑑𝑥
) 1

𝑝

< ∞,

where Ω be open in R𝑛. It is a well-known fact that the space 𝐿𝑝 (Ω, 𝜔), endowed with this norm

is a Banach space. We also have that the dual space of 𝐿𝑝 (Ω, 𝑣) is the space 𝐿𝑝′ (Ω, 𝑣1−𝑝′).

Proposition 1. [17, 18] Let 1 ≤ 𝑝 < ∞. If

𝑣
−1
𝑝−1 ∈ 𝐿1𝑙𝑜𝑐 (Ω) if 𝑝 > 1,

𝑒𝑠𝑠 sup
𝑥∈𝐵

1
𝑣(𝑥) < +∞ if 𝑝 = 1,

for every ball 𝐵 ⊂ Ω. Then,

𝐿𝑝 (Ω, 𝑣) ⊂ 𝐿1𝑙𝑜𝑐 (Ω).

As a consequence, under conditions of Proposition 1, the convergence in 𝐿𝑝 (Ω, 𝑣) implies conver-

gence in 𝐿1
𝑙𝑜𝑐

(Ω). Moreover, every function in 𝐿𝑝 (Ω, 𝑣) has a distributional derivatives.

Definition 1. [18, 19] Let 1 < 𝑝 < ∞. A weight 𝑣 is siad to be an 𝐴𝑝-weight if there exists

𝐴 = 𝐴(𝑝, 𝜔) such that (
1
|𝐵 |

∫
𝐵

𝑣(𝑥)𝑑𝑥
) (
1
|𝐵|

∫
𝐵

(
𝑣(𝑥)

) −1
𝑝−1

𝑑𝑥

) 𝑝−1
≤ 𝐴,

for all 𝐵 ⊂ R𝑛, where |𝐵 | denotes the n-dimensional Lebesgue measure of 𝐵 in R𝑛.
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The infimum over all such constants 𝐴 is called the 𝐴𝑝 constant of𝜔. We denote by 𝐴𝑝, 1 < 𝑝 < ∞,

the set of all 𝐴𝑝 weights.

If 1 ≤ 𝑞 ≤ 𝑝 < ∞, then 𝐴1 ⊂ 𝐴𝑞 ⊂ 𝐴𝑝 (we refer to [15, 16, 26] for complete details about

𝐴𝑝-weights).

Example 1. (Example of 𝐴𝑝-weights)

(i) If 𝐶 ≤ 𝜔(𝑦) ≤ 𝐷 for a.e. 𝑦 ∈ R𝑛, such that 𝐶 and 𝐷 two positive constants , then 𝜔 ∈ 𝐴𝑝 for

1 < 𝑝 < ∞.

(ii) Suppose that 𝜔(𝑦) = |𝑦 |𝜎, 𝑦 ∈ R𝑛. Then 𝜔 ∈ 𝐴𝑝 iff −𝑛 < 𝜎 < 𝑛(𝑝 − 1) for 1 < 𝑝 < ∞ (see

Corollary 4.4 in [25]).

(iii) LetΩ be an open subset ofR𝑛. Then𝜔(𝑦) = 𝑒𝜆𝑣(𝑦) ∈ 𝐴2, with 𝑣 ∈ 𝑊1,𝑛 (Ω) and 𝜆 is sufficiently

small (see Corollary 2.18 in [19]).

Proposition 2. [26] Let 𝑣 ∈ 𝐴𝑝 with 1 6 𝑝 < ∞ and let 𝐹 be a measurable subset of a ball 𝐵 ⊂ R𝑛.

Then (
|𝐹 |
|𝐵 |

) 𝑝
6 𝐶

𝑣(𝐹)
𝑣(𝐵)

where 𝐶 is the 𝐴𝑝 constant of 𝑣.

The weighted Sobolev space𝑊1,𝑝 (Ω, 𝜔) is defined as follows.

Definition 2. Let Ω ⊂ R𝑛 be open, and let 𝜔 be an 𝐴𝑝-weight, 1 < 𝑝 < ∞. We define the

weighted Sobolev space 𝑊1,𝑝 (Ω, 𝜔) as the set of functions 𝑢 ∈ 𝐿𝑝 (Ω, 𝜔) with 𝐷𝑘𝑢 ∈ 𝐿𝑝 (Ω, 𝜔),

for 𝑘 = 1, ..., 𝑛. The norm of 𝑢 in 𝑊1,𝑝 (Ω, 𝜔) is given by

| |𝑢 | |𝑊1, 𝑝 (Ω,𝜔) =
(∫

Ω

|𝑢(𝑥) |𝑝𝜔(𝑥)𝑑𝑥 +
𝑛∑︁

𝑘=1

∫
Ω

|𝐷𝑘𝑢(𝑥) |𝑝𝜔(𝑥)𝑑𝑥
) 1

𝑝

.

We also define 𝑊
1,𝑝
0 (Ω, 𝜔) as the closure of C∞

0 (Ω) in 𝑊1,𝑝 (Ω, 𝜔) with respect to the norm

| |.| |𝑊1, 𝑝 (Ω,𝜔) . Note that 𝐶∞
0 (Ω) is dense in 𝑊

1,𝑝
0 (Ω, 𝜔).

Equipped by this norm,𝑊1,𝑝 (Ω, 𝜔) and𝑊1,𝑝0 (Ω, 𝜔) are separable and reflexive Banach spaces
(
see

Proposition 2.1.2. in [17] and see [16, 18] for more informations about the spaces 𝑊1,𝑝 (Ω, 𝜔)
)
.

The dual of space𝑊1,𝑝0 (Ω, 𝜔) is the space𝑊−1,𝑝′
0 (Ω, 𝜔1−𝑝′), where

𝑊
−1,𝑝′
0 (Ω, 𝜔1−𝑝′) =

{
𝑓0 − div(𝐹) / 𝐹 = ( 𝑓1, ..., 𝑓𝑛) :

𝑓𝑖

𝜔
∈ 𝐿𝑝

′
(Ω, 𝜔), 𝑖 = 0, ..., 𝑛

}
.
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The following theorems will be needed throughout this paper(we refer to [11, 13, 28]).

Theorem 1. Let 𝑣 ∈ 𝐴𝑝, 1 < 𝑝 < ∞, and let Ω ⊂ R𝑛. If 𝑢𝑘 −→ 𝑢 in 𝐿𝑝 (Ω, 𝑣), then there exist a

subsequence (𝑢𝑘 𝑗
) and 𝜓 ∈ 𝐿𝑝 (Ω, 𝑣) such that

(i) 𝑢𝑘 𝑗
(𝑦) −→ 𝑢(𝑦), 𝑘 𝑗 −→ ∞, 𝑣-a.e. on Ω.

(ii) |𝑢𝑘 𝑗
(𝑦) | ≤ 𝜓(𝑦), 𝑣-a.e. on Ω.

Theorem 2. Let 𝑣 ∈ 𝐴𝑝 and Ω ⊂ R𝑛. There exist 𝜃, 𝜇 > 0 such that for any 𝑓 ∈ 𝑊
1,𝑝
0 (Ω, 𝑣) and

each 𝜈 verifing 1 ≤ 𝜈 ≤ 𝑛
𝑛−1 + 𝜇,

| | 𝑓 | |𝐿𝜈𝑝 (Ω,𝑣) ≤ 𝜃 | |∇ 𝑓 | |𝐿𝑝 (Ω,𝑣) ,

where 𝜃 depends only on 𝑛, 𝑝, the 𝐴𝑝 constant of 𝑣 and the diameter of Ω.

The Browder-Minty Theorem is stated as follows.

Theorem 3. Let A : 𝑊 −→ 𝑊∗ be a hemicontinuous, coercive, and monotone operator on reflexive

and separable Banach space 𝑊 . The following assertions are then true:

(a) A𝑢 = 𝐺 has a solution 𝑢 ∈ 𝑊 for all 𝐺 ∈ 𝑊∗,

(b) If the operator A is strictly monotone, then the solution 𝑢 ∈ 𝑊 is unique.

3 Basic assumptions and notion of solutions

3.1 Basic assumptions

Let us now give the precise hypotheses on the Problem (1), and we make the following hypotheses:

Ω ⊂ R𝑛( 𝑛 ≥ 2), 1 < 𝑞, 𝑠 < 𝑝 < ∞, and 𝜔𝑖 ∈ 𝐴𝑝 for 𝑖 = 1, 2, 3, and let 𝑎 : Ω × R𝑛 −→ R,

𝑏 : Ω × R × R𝑛 −→ R, and 𝑔 : Ω −→ R satisfying the following assumptions:

(A1) For 𝑖 = 1, ..., 𝑛, 𝑏𝑖 and 𝑎𝑖 are Caratéodory functions, with

𝑎(𝑥, 𝜁) =
(
𝑎1(𝑥, 𝜁), ..., 𝑎𝑛 (𝑥, 𝜁)

)
and

𝑏(𝑥, 𝜎, 𝜁) =
(
𝑏1(𝑥, 𝜎, 𝜁), ..., 𝑏𝑛 (𝑥, 𝜎, 𝜁)

)
.
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(A2) There are positive functions ℎ1, ℎ2, ℎ̃2 ∈ 𝐿∞(Ω) and 𝑓1 ∈ 𝐿𝑝′ (Ω, 𝜔1)
(
with 1

𝑝
+ 1

𝑝′ = 1
)
and

𝑓2 ∈ 𝐿𝑞′ (Ω, 𝜔2)
(
with 1

𝑞
+ 1

𝑞′ = 1
)
such that :

|𝑎(𝑥, 𝜁) | ≤ 𝑓1(𝑥) + ℎ1(𝑥) |𝜁 |𝑝−1,

and

|𝑏(𝑥, 𝜎, 𝜁) | ≤ 𝑓2(𝑥) + ℎ2(𝑥) |𝜎 |𝑞−1 + ℎ̃2(𝑥) |𝜁 |𝑞−1.

(A3) There exists a constant 𝛼 > 0 such that :

〈𝑎(𝑥, 𝜁) − 𝑎(𝑥, 𝜁 ′), 𝜁 − 𝜁
′〉 > 𝛼 |𝜁 − 𝜁

′ |𝑝,

and

〈𝑏(𝑥, 𝜎, 𝜁) − 𝑏(𝑥, 𝜎 ′
, 𝜁

′), 𝜁 − 𝜁
′〉 > 0,

whenever (𝜎, 𝜁), (𝜎′, 𝜁 ′) ∈ R × R𝑛 with 𝜎 ≠ 𝜎
′ and 𝜁 ≠ 𝜁

′.

(A4) There are constants 𝛽1, 𝛽2, 𝛽3 > 0 such that :

〈𝑎(𝑥, 𝜁), 𝜁〉 > 𝛽1 |𝜁 |𝑝,

and

〈𝑏(𝑥, 𝜎, 𝜁), 𝜁〉 > 𝛽2 |𝜁 |𝑞 + 𝛽3 |𝜎 |𝑞 .

(A5) 𝑔 ∈ 𝐿𝑝 (Ω, 𝜔3), with 1𝑝 = 1
𝑠′ −

1
𝑠
and 𝑔(𝑥) > 0.

3.2 Notions of solutions

Definition 3. One says 𝑢 ∈ 𝑊
1,𝑝
0 (Ω, 𝜔1) is a weak solution to (1), assuming that∫

Ω

𝑎(𝑥,∇𝑢(𝑥)).∇𝑣(𝑥)𝜔1(𝑥)𝑑𝑥 +
∫
Ω

𝑏(𝑥, 𝑢(𝑥),∇𝑢(𝑥)).∇𝑣(𝑥)𝜔2(𝑥)𝑑𝑥 +
∫
Ω

𝑔(𝑥)𝑢(𝑥)𝑣(𝑥)𝜔3𝑑𝑥

=
∫
Ω
𝑓 (𝑥)𝑣(𝑥)𝑑𝑥,

for every 𝑣 ∈ 𝑊
1,𝑝
0 (Ω, 𝜔1).

Remark 1. We seek to establish a relationship between 𝜔1, 𝜔2 and 𝜔3, in order to ensure the

existence and uniqueness of solution for our Problem (1). At first we notice:
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(i) If 𝜔2
𝜔1

∈ 𝐿𝑟1 (Ω, 𝜔1) where 𝑟1 =
𝑝

𝑝−𝑞 , 1 < 𝑞 < 𝑝 < ∞ and 𝜔1, 𝜔2 ∈ 𝐴𝑝, then, by Hölder

inequality we obtain

| |𝑢 | |𝐿𝑞 (Ω,𝜔2) 6 𝐶𝑝,𝑞 | |𝑢 | |𝐿𝑝 (Ω,𝜔1) ,

where 𝐶𝑝,𝑞 = | |𝜔2
𝜔1
| |1/𝑞
𝐿𝑟1 (Ω,𝜔1) .

(ii) Analogously, if 𝜔3
𝜔1

∈ 𝐿𝑟2 (Ω, 𝜔1) where 𝑟2 = 𝑝

𝑝−𝑠 , 1 < 𝑠 < 𝑝 < ∞ and 𝜔1, 𝜔3 ∈ 𝐴𝑝, then

| |𝑢 | |𝐿𝑠 (Ω,𝜔3) 6 𝐶𝑝,𝑠 | |𝑢 | |𝐿𝑝 (Ω,𝜔1) ,

where 𝐶𝑝,𝑠 = | |𝜔3
𝜔1
| |1/𝑠
𝐿𝑟2 (Ω,𝜔1) .

4 Main result

We are now in the position to get existence result of weak solutions for (1).

4.1 Result on the existence and uniqueness

Our main result is as follows.

Theorem 4. Let𝜔𝑖 ∈ 𝐴𝑝(𝑖 = 1, 2, 3), 1 < 𝑞, 𝑠 < 𝑝 < ∞, and assume that the conditions (A1)−(A5)

holds. If 𝑓

𝜔1
∈ 𝐿𝑝′ (Ω, 𝜔1), 𝜔2

𝜔1
∈ 𝐿𝑝/(𝑝−𝑞) (Ω, 𝜔1) and 𝜔3

𝜔1
∈ 𝐿𝑝/(𝑝−𝑠) (Ω, 𝜔1), then (1) has a unique

solution 𝑢 ∈ 𝑊
1,𝑝
0 (Ω, 𝜔1). Moreover, we have

‖𝑢‖
𝑊
1, 𝑝
0 (Ω,𝜔1) ≤ 𝜀

(
| | 𝑓 /𝜔1 | |𝐿𝑝′ (Ω,𝜔1)

)1/𝑝−1
,

where 𝜀 =

[
𝛽1

𝜃 𝑝+1+𝜃

]1/1−𝑝
.

4.2 Proof of Theorem 4

The essential one of our proof is to reduce the (1) to an operator problem A𝑢 = G and then using

the Browder-Minty Theorem 3. The proof will be separated into five steps.
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4.2.1 Equivalent operator equation

In this subsection, we use the some tools and the condition (A2) to prove an existence the operator

A such that the Problem (1) is equivalent to the operator equation A𝑢 = G. We introduce the

operators G : 𝑊1,𝑝0 (Ω, 𝜔1) −→ R and 𝛤 : 𝑊1,𝑝0 (Ω, 𝜔1) ×𝑊
1,𝑝
0 (Ω, 𝜔1) −→ R such that

G(𝑣) =
∫
Ω

𝑓 (𝑥)𝑣(𝑥)𝑑𝑥,

and

𝛤 (𝑢, 𝑣) = 𝛤1(𝑢, 𝑣) + 𝛤2(𝑢, 𝑣) + 𝛤3(𝑢, 𝑣),

where 𝛤𝑖 : 𝑊1,𝑝0 (Ω, 𝜔1) ×𝑊
1,𝑝
0 (Ω, 𝜔1) −→ R, for 𝑖 = 1, 2, 3, are defined as

𝛤1(𝑢, 𝑣) =
∫
Ω

𝑎(𝑥,∇𝑢).∇𝑣𝜔1𝑑𝑥, 𝛤2(𝑢, 𝑣) =
∫
Ω

𝑏(𝑥, 𝑢,∇𝑢).∇𝑣𝜔2𝑑𝑥,

and 𝛤3(𝑢, 𝑣) =
∫
Ω

𝑔(𝑥)𝑢(𝑥)𝑣(𝑥)𝜔3𝑑𝑥.

Consequently, the weak formulation of (1) is given by the operator equation

𝛤 (𝑢, 𝑣) = G(𝑣), for all 𝑣 ∈ 𝑊
1,𝑝
0 (Ω, 𝜔1).

We will show that G ∈ 𝑊
−1,𝑝′
0 (Ω, 𝜔1−𝑝

′

1 ) and 𝛤 (𝑢, .) is linear and continuous, for each 𝑢 ∈

𝑊
1,𝑝
0 (Ω, 𝜔1).

(i) Using Hölder inequality and Theorem 2, we obtain

|G(𝑣) | ≤
∫
Ω

| 𝑓 |
𝜔1

|𝑣 |𝜔1 𝑑𝑥

≤ || 𝑓 /𝜔1 | |𝐿𝑝′ (Ω,𝜔1) | |𝑣 | |𝐿𝑝 (Ω,𝜔1)

≤ 𝜃 | | 𝑓 /𝜔1 | |𝐿𝑝′ (Ω,𝜔1) | |𝑣 | |𝑊1, 𝑝0 (Ω,𝜔1) .

Since 𝑓 /𝜔1 ∈ 𝐿𝑝′ (Ω, 𝜔1), then G ∈ 𝑊
−1,𝑝′
0 (Ω, 𝜔1−𝑝

′

1 ).

(ii) Let 𝑢 ∈ 𝑊
1,𝑝
0 (Ω, 𝜔1). We have

|𝛤 (𝑢, 𝑣) | ≤ |𝛤1(𝑢, 𝑣) | + |𝛤2(𝑢, 𝑣) | + |𝛤3(𝑢, 𝑣) |. (3)
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On the other hand, we get by using (A2), Hölder inequality, Remark 1 (i) and Theorem 2,

|𝛤1(𝑢, 𝑣) | ≤
∫
Ω

|𝑎(𝑥,∇𝑢) | |∇𝑣 |𝜔1𝑑𝑥

≤
∫
Ω

(
𝑓1 + ℎ1 |∇𝑢 |𝑝−1

)
|∇𝑣 |𝜔1𝑑𝑥

≤ || 𝑓1 | |𝐿𝑝′ (Ω,𝜔1) | |∇𝑣 | |𝐿𝑝 (Ω,𝜔1) + ||ℎ1 | |𝐿∞ (Ω) | |∇𝑢 | |𝑝−1𝐿𝑝 (Ω,𝜔1) | |∇𝑣 | |𝐿𝑝 (Ω,𝜔1)

≤
(
| | 𝑓1 | |𝐿𝑝′ (Ω,𝜔1) + ||ℎ1 | |𝐿∞ (Ω) | |𝑢 | |𝑝−1

𝑊
1, 𝑝
0 (Ω,𝜔1)

)
| |𝑣 | |

𝑊
1, 𝑝
0 (Ω,𝜔1) ,

and

|𝛤2(𝑢, 𝑣) | ≤
∫
Ω

|𝑏(𝑥, 𝑢,∇𝑢) | |∇𝑣 |𝜔2𝑑𝑥

≤
∫
Ω

(
𝑓2 + ℎ2 |𝑢 |𝑞−1 + ℎ̃2 |∇𝑢 |𝑞−1

)
|∇𝑣 |𝜔2𝑑𝑥

≤ || 𝑓2 | |𝐿𝑞′ (Ω,𝜔2) | |∇𝑣 | |𝐿𝑞 (Ω,𝜔2) + ||ℎ2 | |𝐿∞ (Ω) | |𝑢 | |𝑞−1𝐿𝑞 (Ω,𝜔2) | |∇𝑣 | |𝐿𝑞 (Ω,𝜔2)

+ || ℎ̃2 | |𝐿∞ (Ω) | |∇𝑢 | |𝑞−1𝐿𝑞 (Ω,𝜔2) | |∇𝑣 | |𝐿𝑞 (Ω,𝜔2)

≤
[
𝐶𝑝,𝑞 | | 𝑓2 | |𝐿𝑞′ (Ω,𝜔2) + 𝐶

𝑞
𝑝,𝑞

(
𝜃𝑞−1 | |ℎ2 | |𝐿∞ (Ω) + || ℎ̃2 | |𝐿∞ (Ω)

)
| |𝑢 | |𝑞−1

𝑊
1, 𝑝
0 (Ω,𝜔1)

]
| |𝑣 | |

𝑊
1, 𝑝
0 (Ω,𝜔1) ,

and by (A5), Hölder inequality, and Remark 1 (ii) , we have

|𝛤3(𝑢, 𝑣) | ≤
∫
Ω

𝑔 𝜔
1
𝑝

3 |𝑢 | 𝜔
1
𝑠

3 |𝑣 | 𝜔
1
𝑠

3 𝑑𝑥

≤ ‖𝑔‖𝐿𝑝 (Ω,𝜔3) ‖𝑢‖𝐿𝑠 (Ω,𝜔3) ‖𝑣‖𝐿𝑠 (Ω,𝜔3)

≤ 𝐶2𝑝,𝑠‖𝑔‖𝐿𝑝 (Ω,𝜔3) ‖𝑢‖𝐿𝑝 (Ω,𝜔1) ‖𝑣‖𝐿𝑝 (Ω,𝜔1)

≤ 𝜃2𝐶2𝑝,𝑠‖𝑔‖𝐿𝑝 (Ω,𝜔3) ‖𝑢‖𝑊1, 𝑝0 (Ω,𝜔1) ‖𝑣‖𝑊1, 𝑝0 (Ω,𝜔1)

Hence, in (3) we obtain, for all 𝑢, 𝑣 ∈ 𝑊
1,𝑝
0 (Ω, 𝜔1),

|𝛤 (𝑢, 𝑣) | ≤
[
| | 𝑓1 | |𝐿𝑝′ (Ω,𝜔1) + ||ℎ1 | |𝐿∞ (Ω) | |𝑢 | |𝑝−1

𝑊
1, 𝑝
0 (Ω,𝜔1)

+ 𝜃2𝐶2𝑝,𝑠‖𝑔‖𝐿𝑝 (Ω,𝜔3) ‖𝑢‖𝑊1, 𝑝0 (Ω,𝜔1)

+ 𝐶𝑝,𝑞 | | 𝑓2 | |𝐿𝑞′ (Ω,𝜔2) + 𝐶
𝑞
𝑝,𝑞

(
𝜃𝑞−1 | |ℎ2 | |𝐿∞ (Ω) + || ℎ̃2 | |𝐿∞ (Ω)

)
| |𝑢 | |𝑞−1

𝑊
1, 𝑝
0 (Ω,𝜔1)

]
‖𝑣‖

𝑊
1, 𝑝
0 (Ω,𝜔1) .

Then 𝛤 (𝑢, .) is linear and continuous, for each 𝑢 ∈ 𝑊
1,𝑝
0 (Ω, 𝜔1). Thus, there exists a linear

and continuous operator on𝑊1,𝑝0 (Ω, 𝜔1) denoted by A such that

〈A𝑢, 𝑣〉 = 𝛤 (𝑢, 𝑣), for all 𝑢, 𝑣 ∈ 𝑊
1,𝑝
0 (Ω, 𝜔1).
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Moreover, we have

‖A𝑢‖∗ ≤ || 𝑓1 | |𝐿𝑝′ (Ω,𝜔1) + ||ℎ1 | |𝐿∞ (Ω) | |𝑢 | |𝑝−1
𝑊
1, 𝑝
0 (Ω,𝜔1)

+ 𝜃2𝐶2𝑝,𝑠‖𝑔‖𝐿𝑝 (Ω,𝜔3) ‖𝑢‖𝑊1, 𝑝0 (Ω,𝜔1)

+ 𝐶𝑝,𝑞 | | 𝑓2 | |𝐿𝑞′ (Ω,𝜔2) + 𝐶
𝑞
𝑝,𝑞

(
𝜃𝑞−1 | |ℎ2 | |𝐿∞ (Ω) + || ℎ̃2 | |𝐿∞ (Ω)

)
| |𝑢 | |𝑞−1

𝑊
1, 𝑝
0 (Ω,𝜔1)

,

with ‖A𝑢‖∗ := sup
{
|〈A𝑢, 𝑣〉| = |𝛤 (𝑢, 𝑣) | : 𝑣 ∈ 𝑊

1,𝑝
0 (Ω, 𝜔1), ‖𝑣‖𝑊1, 𝑝0 (Ω,𝜔1) = 1

}
is the norm

in𝑊−1,𝑝′
0 (Ω, 𝜔1−𝑝

′

1 ). Hence, we obtain the operator

A : 𝑊1,𝑝0 (Ω, 𝜔1) −→ 𝑊
−1,𝑝′
0 (Ω, 𝜔1−𝑝

′

1 )

𝑢 ↦−→ A𝑢.

However, the Problem (1) is equivalent to the problem

A𝑢 = G, 𝑢 ∈ 𝑊
1,𝑝
0 (Ω, 𝜔1).

4.2.2 Coercivity of the operator A

This step establishes that the operator A is coercive. To this purpose, we have

〈A𝑢, 𝑢〉 = 𝛤 (𝑢, 𝑢)

=

∫
Ω

〈𝑎(𝑥,∇𝑢),∇𝑢〉𝜔1𝑑𝑥 +
∫
Ω

〈𝑏(𝑥, 𝑢,∇𝑢),∇𝑢〉𝜔2𝑑𝑥 +
∫
Ω

𝑔 𝑢2 𝜔3𝑑𝑥,

for each 𝑢 ∈ 𝑊
1, 𝑝
0 (Ω, 𝜔1). Moreover, from (A4), 𝑔(𝑥) > 0 and Theorem 2, we obtain

〈A𝑢, 𝑢〉 ≥ 𝛽1

∫
Ω

|∇𝑢 |𝑝𝜔1𝑑𝑥 + 𝛽2

∫
Ω

|∇𝑢 |𝑞𝜔2𝑑𝑥 + 𝛽3

∫
Ω

|𝑢 |𝑞𝜔2𝑑𝑥

≥ 𝛽1

∫
Ω

|∇𝑢 |𝑝𝜔1𝑑𝑥

≥ 𝛽1

𝐶
𝑝

Ω
+ 1

‖𝑢‖ 𝑝
𝑊
1, 𝑝
0 (Ω,𝜔1)

.

Hence, since 𝑝 > 1, we have

〈A𝑢, 𝑢〉
‖𝑢‖

𝑊
1, 𝑝
0 (Ω,𝜔1)

−→ +∞ as ‖𝑢‖
𝑊
1, 𝑝
0 (Ω,𝜔1) −→ +∞,

that means, A is coercive.
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4.2.3 Monotonicity of the operator A

The operator A is strictly monotone. In fact, for all 𝜉1, 𝜉2 ∈ 𝑊
1, 𝑝
0 (Ω, 𝜔1) with 𝜉1 ≠ 𝜉2, we have

〈A𝜉1 − A𝜉2, 𝜉1 − 𝜉2〉

= 𝛤 (𝜉1, 𝜉1 − 𝜉2) − 𝛤 (𝜉2, 𝜉1 − 𝜉2)

=

∫
Ω

〈𝑎(𝑥,∇𝜉1),∇(𝜉1 − 𝜉2)〉𝜔1𝑑𝑥 −
∫
Ω

〈𝑎(𝑥,∇𝜉2),∇(𝜉1 − 𝜉2)〉𝜔1𝑑𝑥

+
∫
Ω

〈𝑏(𝑥, 𝜉1,∇𝜉1),∇(𝜉1 − 𝜉2)〉𝜔2𝑑𝑥 −
∫
Ω

〈𝑏(𝑥, 𝜉2,∇𝜉2),∇(𝜉1 − 𝜉2)〉𝜔2𝑑𝑥

+
∫
Ω

𝑔 𝜉1 (𝜉1 − 𝜉2) 𝜔3𝑑𝑥 −
∫
Ω

𝑔 𝜉2 (𝜉1 − 𝜉2) 𝜔3𝑑𝑥

=

∫
Ω

〈𝑎(𝑥,∇𝜉1) − 𝑎(𝑥,∇𝜉2),∇(𝜉1 − 𝜉2)〉𝜔1𝑑𝑥 +
∫
Ω

〈𝑏(𝑥, 𝜉1,∇𝜉1) − 𝑏(𝑥, 𝜉2,∇𝜉2),∇(𝜉1 − 𝜉2)〉𝜔2𝑑𝑥

+
∫
Ω

𝑔 (𝜉1 − 𝜉2)2 𝜔3𝑑𝑥.

However, thanks to (A3) and 𝑔(𝑥) > 0, we obtain

〈A𝜉1 − A𝜉2, 𝜉1 − 𝜉2〉 ≥
∫
Ω

𝛼 |∇(𝜉1 − 𝜉2) |𝑝𝜔1𝑑𝑥 = 𝛼‖∇(𝜉1 − 𝜉2)‖ 𝑝𝐿𝑝 (Ω,𝜔1) .

Hence, by Theorem 2, we conclude that

〈A𝜉1 − A𝜉2, 𝜉1 − 𝜉2〉 ≥ 𝛼

(𝜃 𝑝 + 1) ‖𝜉1 − 𝜉2‖ 𝑝
𝑊
1, 𝑝
0 (Ω,𝜔1)

> 0.

4.2.4 Continuity of the operator A

The operator A must be shown to be continuous. To this purpose let 𝑢𝑘 −→ 𝑢 in𝑊1, 𝑝0 (Ω, 𝜔1) as 𝑘 −→ ∞.

Note that if 𝑢𝑘 −→ 𝑢 in𝑊1, 𝑝0 (Ω, 𝜔1), then 𝑢𝑘 −→ 𝑢 in 𝐿 𝑝 (Ω, 𝜔1) et ∇𝑢𝑘 −→ ∇𝑢 in (𝐿 𝑝 (Ω, 𝜔1))𝑛. Hence,

thanks to Theorem 1, there exist (𝑢𝑘 𝑗
), 𝜓1 ∈ 𝐿 𝑝 (Ω, 𝜔1) and 𝜓2 ∈ 𝐿 𝑝 (Ω, 𝜔1) such that

𝑢𝑘 𝑗
(𝑥) −→ 𝑢(𝑥), 𝜔1 − 𝑎.𝑒. in Ω

|𝑢𝑘 𝑗
(𝑥) | ≤ 𝜓1(𝑥), 𝜔1 − 𝑎.𝑒. in Ω

∇𝑢𝑘 𝑗
(𝑥) −→ ∇𝑢(𝑥), 𝜔1 − 𝑎.𝑒. in Ω

|∇𝑢𝑘 𝑗
(𝑥) | ≤ 𝜓2(𝑥), 𝜔1 − 𝑎.𝑒. in Ω.

(4)

We will show that A𝑢𝑘 −→ A𝑢 in 𝑊−1, 𝑝′
0 (Ω, 𝜔1−𝑝

′

1 ). In order to prove this convergence we proceed in 2

steps.
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Step 1:

For 𝑖 = 1, ..., 𝑛, we define the operator

𝐵𝑖 : 𝑊1, 𝑝0 (Ω, 𝜔1) −→ 𝐿 𝑝′ (Ω, 𝜔1)

(𝐵𝑖𝑢) (𝑥) = 𝑎𝑖 (𝑥,∇𝑢(𝑥)).

We now show that

𝐵𝑖𝑢𝑚 −→ 𝐵𝑖𝑢 in 𝐿 𝑝′ (Ω, 𝜔1).

The Lebesgue’s theorem will be applied.

(i) Let 𝑢 ∈ 𝑊
1, 𝑝
0 (Ω, 𝜔1). Using (A2) and Theorem 2(with 𝜈 = 1), we obtain

‖𝐵𝑖𝑢‖ 𝑝
′

𝐿𝑝′ (Ω,𝜔1)
=

∫
Ω

|𝐵𝑖𝑢(𝑥) |𝑝
′
𝜔1𝑑𝑥 =

∫
Ω

|𝑎𝑖 (𝑥,∇𝑢) |𝑝
′
𝜔1𝑑𝑥

≤
∫
Ω

(
𝑓1 + ℎ1 |∇𝑢 |𝑝−1

) 𝑝′
𝜔1𝑑𝑥

≤ 𝐶𝑝

∫
Ω

(
𝑓
𝑝′

1 + ℎ
𝑝′

1 |∇𝑢 |𝑝
)
𝜔1𝑑𝑥

≤ 𝐶𝑝

[
‖ 𝑓1‖ 𝑝

′

𝐿𝑝′ (Ω,𝜔1)
+ ‖ℎ1‖ 𝑝

′

𝐿∞ (Ω) ‖∇𝑢‖
𝑝

𝐿𝑝 (Ω,𝜔1)

]
≤ 𝐶𝑝

[
‖ 𝑓1‖ 𝑝

′

𝐿𝑝′ (Ω,𝜔1)
+ ‖ℎ1‖ 𝑝

′

𝐿∞ (Ω) ‖𝑢‖
𝑝

𝑊
1, 𝑝
0 (Ω,𝜔1)

]
.

(ii) Let 𝑢𝑘 −→ 𝑢 in𝑊1, 𝑝0 (Ω, 𝜔1) as 𝑘 −→ ∞.

By (A2) and (4), we obtain

‖𝐵𝑖𝑢𝑘 𝑗
− 𝐵𝑖𝑢‖ 𝑝

′

𝐿𝑝′ (Ω,𝜔1)
=

∫
Ω

|𝐵𝑖𝑢𝑘 𝑗
(𝑥) − 𝐵𝑖𝑢(𝑥) |𝑝

′
𝜔1𝑑𝑥

≤
∫
Ω

(
|𝑎𝑖 (𝑥,∇𝑢𝑘 𝑗

) | + |𝑎𝑖 (𝑥,∇𝑢) |
) 𝑝′

𝜔1𝑑𝑥

≤ 𝐶𝑝

∫
Ω

(
|𝑎𝑖 (𝑥,∇𝑢𝑘 𝑗

) |𝑝′ + |𝑎𝑖 (𝑥,∇𝑢) |𝑝
′
)
𝜔1𝑑𝑥

≤ 𝐶𝑝

∫
Ω

[(
𝑓1 + ℎ1 |∇𝑢𝑘 𝑗

|𝑝−1
) 𝑝′

+
(
𝑓1 + ℎ1 |∇𝑢 |𝑝−1

) 𝑝′]
𝜔1𝑑𝑥

≤ 𝐶𝑝

∫
Ω

[(
𝑓1 + ℎ1𝜓

𝑝−1
2

) 𝑝′
+

(
𝑓1 + ℎ1𝜓

𝑝−1
2

) 𝑝′]
𝜔1𝑑𝑥

≤ 2𝐶𝑝𝐶
′
𝑝

∫
Ω

(
𝑓
𝑝′

1 + ℎ
𝑝′

1 𝜓
𝑝

2

)
𝜔1𝑑𝑥

≤ 2𝐶𝑝𝐶
′
𝑝

[
‖ 𝑓1‖ 𝑝

′

𝐿𝑝′ (Ω,𝜔1)
+ ‖ℎ1‖ 𝑝

′

𝐿∞ (Ω) ‖𝜓2‖
𝑝

𝐿𝑝 (Ω,𝜔1)

]
.

Hence, thanks to (A1), we get, as 𝑘 −→ ∞

𝐵𝑖𝑢𝑘 𝑗
(𝑥) = 𝑎𝑖 (𝑥,∇𝑢𝑘 𝑗

(𝑥)) −→ 𝑎𝑖 (𝑥,∇𝑢(𝑥)) = 𝐵𝑖𝑢(𝑥).

Hence, by Lebesgue’s theorem, we get

‖𝐵𝑖𝑢𝑘 𝑗
− 𝐵𝑖𝑢‖𝐿𝑝′ (Ω,𝜔1) −→ 0,
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that is,

𝐵𝑖𝑢𝑘 𝑗
−→ 𝐵𝑖𝑢 in 𝐿 𝑝′ (Ω, 𝜔1).

Finally, we have

𝐵𝑖𝑢𝑚 −→ 𝐵𝑖𝑢 in 𝐿 𝑝′ (Ω, 𝜔1). (5)

Step 2:

We define the operator, for 𝑖 = 1, ..., 𝑛, as follows

𝐺𝑖 : 𝑊1, 𝑝0 (Ω, 𝜔1) −→ 𝐿𝑞′ (Ω, 𝜔2)

(𝐺𝑖𝑢) (𝑥) = 𝑏𝑖 (𝑥, 𝑢(𝑥),∇𝑢(𝑥)).

We’ve also got

𝐺𝑖𝑢𝑚 −→ 𝐺𝑖𝑢 in 𝐿𝑞′ (Ω, 𝜔2).

In fact,

(i) Let 𝑢 ∈ 𝑊
1, 𝑝
0 (Ω, 𝜔1). Using (A2), Remark 1 (i) and Theorem 2 (with 𝜈 = 1), we obtain

‖𝐺𝑖𝑢‖𝑞
′

𝐿𝑞′ (Ω,𝜔2)
=

∫
Ω

|𝑏𝑖 (𝑥, 𝑢,∇𝑢) |𝑞
′
𝜔2𝑑𝑥

≤
∫
Ω

(
𝑓2 + ℎ2 |𝑢 |𝑞−1 + ℎ̃2 |∇𝑢 |𝑞−1

)𝑞′

𝜔2𝑑𝑥

≤ 𝐶𝑞

∫
Ω

[
𝑓
𝑞′

2 + ℎ
𝑞′

2 |𝑢 |
𝑞 + ℎ̃2

𝑞′
|∇𝑢 |𝑞

]
𝜔2𝑑𝑥

≤ 𝐶𝑞

[
‖ 𝑓2‖𝑞

′

𝐿𝑞′ (Ω,𝜔2)
+ ‖ℎ2‖𝑞

′

𝐿∞ (Ω) ‖𝑢‖
𝑞

𝐿𝑞 (Ω,𝜔2) + ‖ ℎ̃2‖𝑞
′

𝐿∞ (Ω) ‖∇𝑢‖
𝑞

𝐿𝑞 (Ω,𝜔2)

]
≤ 𝐶𝑞

[
‖ 𝑓2‖𝑞

′

𝐿𝑞′ (Ω,𝜔2)
+ 𝐶

𝑞
𝑝,𝑞

(
𝜃𝑞 ‖ℎ2‖𝑞

′

𝐿∞ (Ω) + ‖ ℎ̃2‖𝑞
′

𝐿∞ (Ω)

)
‖𝑢‖𝑞

𝑊
1, 𝑝
0 (Ω,𝜔1)

]
.

(ii) Let 𝑢𝑘 −→ 𝑢 in𝑊1, 𝑝0 (Ω, 𝜔1) as 𝑘 −→ ∞.

According to (A2), Remark 1 (i) and the same arguments as in Step 1 (ii), we get similarly

𝐺𝑖𝑢𝑚 −→ 𝐺𝑖𝑢 in 𝐿𝑞′ (Ω, 𝜔2). (6)

Finally, let 𝑣 ∈ 𝑊
1, 𝑝
0 (Ω, 𝜔1) and using Hölder inequality, Theorem 2 (with 𝜈 = 1) and Remark 1, we obtain

|𝛤1(𝑢𝑘 , 𝑣) − 𝛤1(𝑢, 𝑣) | =

��� ∫
Ω

〈𝑎(𝑥,∇𝑢𝑘) − 𝑎(𝑥,∇𝑢),∇𝑣〉𝜔1𝑑𝑥
���

≤
𝑛∑︁
𝑖=1

∫
Ω

|𝑎𝑖 (𝑥,∇𝑢𝑘) − 𝑎𝑖 (𝑥,∇𝑢) | |𝐷 𝑗𝑣 |𝜔1𝑑𝑥

=

𝑛∑︁
𝑖=1

∫
Ω

|𝐵𝑖𝑢𝑘 − 𝐵𝑖𝑢 | |𝐷 𝑗𝑣 |𝜔1𝑑𝑥

≤
𝑛∑︁
𝑖=1

‖𝐵𝑖𝑢𝑘 − 𝐵𝑖𝑢‖𝐿𝑝′ (Ω,𝜔1) ‖𝐷 𝑗𝑣‖𝐿𝑝 (Ω,𝜔1)

≤
(

𝑛∑︁
𝑖=1

‖𝐵𝑖𝑢𝑘 − 𝐵𝑖𝑢‖𝐿𝑝′ (Ω,𝜔1)

)
‖𝑣‖

𝑊
1, 𝑝
0 (Ω,𝜔1) ,
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|𝛤2(𝑢𝑘 , 𝑣) − 𝛤2(𝑢, 𝑣) | =

��� ∫
Ω

〈𝑏(𝑥, 𝑢𝑘 ,∇𝑢𝑘) − 𝑏(𝑥, 𝑢,∇𝑢),∇𝑣〉𝜔2𝑑𝑥
���

≤
𝑛∑︁
𝑖=1

∫
Ω

|𝑏𝑖 (𝑥, 𝑢𝑘 ,∇𝑢𝑘) − 𝑏𝑖 (𝑥, 𝑢,∇𝑢) | |𝐷 𝑗𝑣 |𝜔2𝑑𝑥

=

𝑛∑︁
𝑖=1

∫
Ω

|𝐺𝑖𝑢𝑘 − 𝐺𝑖𝑢 | |𝐷 𝑗𝑣 |𝜔2𝑑𝑥

≤
(

𝑛∑︁
𝑖=1

‖𝐺𝑖𝑢𝑘 − 𝐺𝑖𝑢‖𝐿𝑞′ (Ω,𝜔2)

)
‖∇𝑣‖𝐿𝑞 (Ω,𝜔2)

≤ 𝐶𝑝,𝑞

(
𝑛∑︁
𝑖=1

‖𝐺𝑖𝑢𝑘 − 𝐺𝑖𝑢‖𝐿𝑞′ (Ω,𝜔2)

)
‖∇𝑣‖𝐿𝑝 (Ω,𝜔1)

≤ 𝐶𝑝,𝑞

(
𝑛∑︁
𝑖=1

‖𝐺𝑖𝑢𝑘 − 𝐺𝑖𝑢‖𝐿𝑞′ (Ω,𝜔2)

)
‖𝑣‖

𝑊
1, 𝑝
0 (Ω,𝜔1) ,

and
|𝛤3(𝑢𝑘 , 𝑣) − 𝛤3(𝑢, 𝑣) | ≤

∫
Ω

|𝑔 | |𝑢𝑘 − 𝑢 | |𝑣 |𝜔3𝑑𝑥

≤ ‖𝑔‖𝐿𝑝 (Ω,𝜔3) ‖𝑢𝑘 − 𝑢‖𝐿𝑠 (Ω,𝜔3) ‖𝑣‖𝐿𝑠 (Ω,𝜔3)

≤ 𝐶2𝑝,𝑠 ‖𝑔‖𝐿𝑝 (Ω,𝜔3) ‖𝑢𝑘 − 𝑢‖𝐿𝑝 (Ω,𝜔1) ‖𝑣‖𝐿𝑝 (Ω,𝜔1)

≤ 𝐶2Ω𝐶
2
𝑝,𝑠 ‖𝑔‖𝐿𝑝 (Ω,𝜔3) ‖𝑢𝑘 − 𝑢‖

𝑊
1, 𝑝
0 (Ω,𝜔1) ‖𝑣‖𝐿𝑝 (Ω,𝜔1) .

Hence, for all 𝑣 ∈ 𝑊
1, 𝑝
0 (Ω, 𝜔1), we have

|𝛤 (𝑢𝑘 , 𝑣) − 𝛤 (𝑢, 𝑣) | ≤ |𝛤1(𝑢𝑘 , 𝑣) − 𝛤1(𝑢, 𝑣) | + |𝛤2(𝑢𝑘 , 𝑣) − 𝛤2(𝑢, 𝑣) | + |𝛤3(𝑢𝑘 , 𝑣) − 𝛤3(𝑢, 𝑣) |

≤
[ 𝑛∑︁
𝑖=1

(
‖𝐵𝑖𝑢𝑘 − 𝐵𝑖𝑢‖𝐿𝑝′ (Ω,𝜔1) + 𝐶𝑝,𝑞 ‖𝐺𝑖𝑢𝑘 − 𝐺𝑖𝑢‖𝐿𝑞′ (Ω,𝜔2)

)
+ 𝐶2Ω𝐶

2
𝑝,𝑠 ‖𝑔‖𝐿𝑝 (Ω,𝜔3) ‖𝑢𝑘 − 𝑢‖

𝑊
1, 𝑝
0 (Ω,𝜔1)

]
‖𝑣‖𝐿𝑝 (Ω,𝜔1)

Then, we get

‖A𝑢𝑘 − A𝑢‖∗ ≤
𝑛∑︁
𝑖=1

(
‖𝐵𝑖𝑢𝑘 − 𝐵𝑖𝑢‖𝐿𝑝′ (Ω,𝜔1) + 𝐶𝑝,𝑞 ‖𝐺𝑖𝑢𝑘 − 𝐺𝑖𝑢‖𝐿𝑞′ (Ω,𝜔2)

)
+𝐶2Ω𝐶

2
𝑝,𝑠 ‖𝑔‖𝐿𝑝 (Ω,𝜔3) ‖𝑢𝑘 − 𝑢‖

𝑊
1, 𝑝
0 (Ω,𝜔1) .

According to (5) and (6), we deduce that

‖A𝑢𝑘 − A𝑢‖∗ −→ 0 as 𝑘 −→ ∞,

that is, A is continuous.

Therefore, by Theorem 3, the operator equation A𝑢 = G admits exactly one solution 𝑢 ∈ 𝑊
1, 𝑝
0 (Ω, 𝜔1) and

it is the unique solution for Problem (1).
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4.2.5 Estimates for ‖𝑢‖
𝑊
1, 𝑝
0 (Ω,𝜔1)

By setting 𝑣 = 𝑢 in Definition 3, we get

𝛤 (𝑢, 𝑢) = 𝛤1(𝑢, 𝑢) + 𝛤2(𝑢, 𝑢) + 𝛤3(𝑢, 𝑢) = G(𝑢). (7)

Onthe other hand, using (A4), 𝑔(𝑥) > 0 and Theorem 2(with 𝜈 = 1), we obtain

𝛤 (𝑢, 𝑣) ≥ 𝛾‖𝑢‖ 𝑝
𝑊
1, 𝑝
0 (Ω,𝜔1)

, (8)

where 𝛾 =
𝛽1

𝜃 𝑝+1 .

Next, applying Hölder inequality and Theorem 2(with 𝜈 = 1), we get

G(𝑢) ≤ |G(𝑢) | ≤ 𝑀 ‖𝑢‖
𝑊
1, 𝑝
0 (Ω,𝜔1) , (9)

where 𝑀 = 𝜃 | | 𝑓 /𝜔1 | |𝐿𝑝′ (Ω,𝜔1) .

According to (7), (8) and (9), we deduce that

𝛾‖𝑢‖ 𝑝
𝑊
1, 𝑝
0 (Ω,𝜔1)

≤ 𝑀 ‖𝑢‖
𝑊
1, 𝑝
0 (Ω,𝜔1) ,

Then

‖𝑢‖ 𝑝−1
𝑊
1, 𝑝
0 (Ω,𝜔1)

≤ 𝑀

𝛾
.

Therefore

‖𝑢‖
𝑊
1, 𝑝
0 (Ω,𝜔1) ≤

[
𝑀

𝛾

]1/𝑝−1
= 𝐶

(
| | 𝑓 /𝜔1 | |𝐿𝑝′ (Ω,𝜔1)

)1/𝑝−1
,

where 𝐶 =

[
𝛽1

𝜃 𝑝+1+𝜃

]1/1−𝑝
.

As a conclusion, the proof of Theorem 4 is complete.

5 Example

In this section we give an example to illustrate the usefulness of our main results.

Let Ω = {(𝜉, 𝛾) ∈ R2 : 𝜉2 + 𝛾2 < 1}, and consider the weight functions 𝜔1(𝜉, 𝛾) =
(
𝜉2 + 𝛾2

)−1/2,
𝜔2(𝜉, 𝛾) =

(
𝜉2 + 𝛾2

)−3/2 and 𝜔3(𝜉, 𝛾) =
(
𝜉2 + 𝛾2

)−1/3 (
note that 𝜔1, 𝜔2, 𝜔3 ∈ 𝐴4, 𝑝 = 4, 𝑞 = 3

and 𝑠 = 8/3
)
. We also define the functions 𝑏 : Ω ×R ×R2 −→ R2, 𝑎 : Ω ×R2 −→ R2 and 𝑔 : Ω −→ R, as

follows:

𝑎

(
(𝜉, 𝛾), 𝜂

)
= ℎ1(𝜉, 𝛾) |𝜂 |2𝑠𝑔𝑛(𝜂)𝜂,
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with ℎ1(𝜉, 𝛾) = 𝑒 ( 𝜉
2+𝛾2) , and

𝑏

(
(𝜉, 𝛾), 𝜎, 𝜂

)
= ℎ̃2(𝜉, 𝛾) |𝜂 |2𝑠𝑔𝑛(𝜂),

with ℎ̃2(𝜉, 𝛾) = 2 + 𝑠𝑖𝑛(𝜉2 + 𝛾2), and

𝑔(𝜉, 𝛾) = 2 − 𝑐𝑜𝑠2(𝜉𝛾).

Consider the following problem 
L𝑢(𝜉, 𝛾) = 𝑠𝑖𝑛( 𝜉+𝛾)

( 𝜉 2+𝛾2)1/6 in Ω,

𝑢(𝜉, 𝛾) = 0 on 𝜕Ω,
(10)

where

L𝑢(𝜉, 𝛾) = div
[
𝜔1(𝜉, 𝛾)𝑎

(
(𝜉, 𝛾),∇𝑢(𝜉, 𝛾)

)
+𝜔2(𝜉, 𝛾)𝑏

(
(𝜉, 𝑦), 𝑢(𝜉, 𝛾),∇𝑢(𝜉, 𝛾)

)]
+𝜔3(𝜉, 𝛾)𝑔(𝜉, 𝛾)𝑢(𝜉, 𝛾).

(11)

As a result of Theorem 4, the problem (10) has a unique solution 𝑢 ∈ 𝑊
1,4
0 (Ω, 𝜔1).

6 Conclusion

In this paper, we studied the existence and uniqueness of weak positive solution for a class of nonlinear

degenerate elliptic equationsWith weight and L1 data by adopting Sobolev spaces with weight𝑊1, 𝑝0 (Ω, 𝜔1).

First, we transformed the problem into an equivalent operator equation; second, we utilized the Browder-

Minty Theorem to prove the existence and uniqueness of weak solution. We hope in a future work to solve

other similar problems by generalization of (1), by replacing, for example, 𝑊1, 𝑝0 (Ω, 𝜔1) by the weighted

Sobolev spaces with variable exponents and other spaces.
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