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Abstract

Suppose that 𝐺 is a non-abelian 𝑝-group, it was shown that if G is of class 2 then, there

exists a noninner automorphism of order 𝑝 such that 𝐶𝐺 (𝑍 (Φ(𝐺))) = Φ(𝐺) [1]. Moreover,

if G is of maximal class of order 𝑝𝑛, Fouladi S. [13] showed that the order of the group of all

automorphisms of G centralizes the Frattini quotient and is not greater than 𝑝2(𝑛−2) if and only if

G is metabelian. In this paper, we show that if 𝑏(𝐺) = 𝑝2 and 𝑝 ≠ 2, then
⋂{𝑘𝑒𝑟 𝜒 | 𝜒(1) = 𝑝2}

= 1. (Here, b(G) = max(cd(G)) and cd(G)= {𝜒(1) | 𝜒 ∈ 𝐼𝑟𝑟 (𝐺)}). Suppose further that 𝐺 is

a 𝑝-group with Frattini factor group of order ≥ 𝑝2𝑎−1 we show that the number of elements of

order 𝑝 in G is congruent to 1 modulo 𝑝𝑎 1 ≤ 𝑎 ∈ N.

Keywords: Finite 𝑝-group, Automorphism group, Maximal class, Nilpotent groups Noninner

automorphisms, 𝑝-Groups of class 2, Metabelian group.

1 Introduction

As a result of the recent modern developments in the concepts of finite 𝑝-groups, there exists

a conjecture of which many contributions have been made through various personalities such as

W.Gaschütz [5], M. Deaconescu and G. Silberberg [4], A. Abdollahi [1], and a host of others. The

conjecture (see [9]) establishes the fact that G has a noninner automorphism of order 𝑝 [10]. Also,

by a cohomological result of P. Schmid, G admits a noninner automorphism of order 𝑝 whenever G
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is regular . Furthermore, a number of studies of the automorphism groups of 𝑝-groups of maximal

class have been made. For instance , Juhász and Malinowska (see [8] and [10]) concentrate mostly

on small automorphismgroups. Large automorphismgroupswere considered in appreciable extents

by Shirin Fouladi[13], who was able to show that if G is non-cyclic and of maximal class and of

order 𝑝𝑛, then | 𝐴𝑢𝑡Φ(𝐺) |= 𝑝2(𝑛−2) iff G is a metabelian group. Considering the concepts from

the character point of view ,observation is made for G that if it is of class 2 and suppose that b(G) =

𝑝2 and 𝑝 ≠ 2. By definition, if 𝜒 is a character of G , then 𝑘𝑒𝑟 (𝜒) = {𝑥 ∈ 𝐺 | 𝜒(𝑥) = 𝜒(1)} is the

kernel of a character 𝜒, where 𝜒(1) is the degree of a character 𝜒 of G. Then, the intersection of

the 𝑘𝑒𝑟 (𝜒) of which the degree equals 𝑝2 is trivial. We also consider G with Frattini factor group

of order not less than 𝑝2𝑎−1, 𝑎 ∈ N.

2 Statement of Main Result

(a) If G is of class 2, and suppose that b(G) = 𝑝2 . If 𝑝 ≠ 2 then ,
⋂{𝑘𝑒𝑟 𝜒 | 𝜒(1) = 𝑝2} = 1,

where b(G) = max(cd(G)) and cd(G) = {𝜒(1) | 𝜒 ∈ 𝐼𝑟𝑟 (𝐺).

(b) Suppose that G is a 𝑝-group with Frattini factor group of order ≥ 𝑝2𝑎−1 𝑎 ∈ Z . Then the

number of elements of order 𝑝 in G is ≡ 1 mod 𝑝𝑎.

Definitions:

(a) Frattini subgroup is the intersection of all maximal subgroups of 𝐺. This is denoted by

Φ(𝐺).

(b) A group G is of maximal class if | 𝐺 |≤ 𝑝𝑛, 𝑛 ≥ 3 and𝐺 = 𝐺0 ≥ 𝐺1 ≥ · · ·𝐺𝑛 ≥ 𝐺𝑛+1 = {𝑒}.

Then, we say that 𝐺 is of class 𝑛 and write cl(G) = n > 1.

(c) A group G is metabelian if the quotient group 𝐺/𝑍 (𝐺), is abelian. This implies that the

commutator subgroup 𝐺′ is contained in 𝑍 (𝐺). Such group possesses a normal subgroup 𝑁

such that 𝑁 and 𝐺/𝑁 are both abelian. The following are metabelian;

(i) All abelian groups.

(ii) All generalized dihedral groups.
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(iii) All groups of order less than 24.

(iv) All metacyclic groups.

(d) If G is nilpotent of class 2 then, every commutator [𝑥, 𝑦] of 𝐺, lies in the centre of 𝐺, i.e for

any 𝑥, 𝑦 ∈ 𝐺, [𝑥, 𝑦] commutes with any 𝑧 ∈ 𝐺.

Theorem 1: Every finite non-abelian 𝑝-group G has a noninner automorphism of order 𝑝 leaving

either the Frattini subgroup Φ(𝐺) or Ω1(𝑍 (𝐺)) elementwise fixed, i.e.𝐶𝐺 (𝑍 (Φ(𝐺))) = Φ(𝐺) if

G is of class 2. The following remarks were applied in the proof of theorem 1.

(1) Suppose that 𝐺 is a group. Suppose further that𝐺′ the commutator subgroup of 𝐺 is a finite

cyclic 𝑝-group for some prime 𝑝, then 𝐺′ is generated by [𝑥, 𝑦] for some 𝑥, 𝑦 ∈ 𝐺. Now,

𝐺′ is abelian and the orders of𝑥, 𝑦 ∈ 𝐺 are powers of 𝑝, then G’ has an exponent which is

given by: 𝑚𝑎𝑥 | [𝑥, 𝑦] |: 𝑥, 𝑦 ∈ 𝐺. By the virtue of the fact that 𝐺′ is a finite cyclic group, it

implies that 𝑒𝑥𝑝(𝐺′) =| 𝐺′ |. Clearly, one of the elements of the set [𝑥, 𝑦] : 𝑥, 𝑦 ∈ 𝐺 is the

generator of 𝐺′.

(2) From (1), we have that 𝐺′ =< [𝑥, 𝑦] >, 𝑥, 𝑦 ∈ 𝐺. Now, for 𝐺 to be finite and nilpotent

of class 2, we have that 𝐺 =< 𝑥, 𝑦 > 𝐶𝐺 (< 𝑥, 𝑦 >) since every commutator [𝑥, 𝑦] lies in

𝑍 (𝐺) [1]. Observe that for any 𝑔 ∈ 𝐺, [𝑥, 𝑔] = [𝑥, 𝑦]𝑢 and [𝑦, 𝑔] = [𝑥, 𝑦]𝑣, where 𝑢 and

𝑣 are integers. Here, we have that [𝑥, 𝑦−𝑢𝑥𝑣𝑔] = 1 and [𝑦, 𝑦−𝑢𝑥𝑣𝑔] = 1. This is because

[𝑥, 𝑥𝑣] = [𝑦, 𝑦−𝑢] = 1. And so, 𝑦−𝑢𝑥𝑣𝑔 ∈ 𝐶𝐺 (< 𝑥, 𝑦 >) ⇒ 𝐺 =< 𝑥, 𝑦 > 𝐶𝐺 (< 𝑥, 𝑦 >).

(3) Suppose that 𝐺 is a nilpotent group of class 2, and 𝑎, 𝑏 ∈ 𝐺 3 0 < 𝑘 ∈ Z Observe

that [𝑎, 𝑏] lies in the center of 𝐺. Then (𝑎𝑏)𝑘 = 𝑎𝑘𝑏𝑘 [𝑏, 𝑎] 12 𝑘 (𝑘−1) and [𝑎, 𝑏]𝑚 =

[𝑎𝑚, 𝑏] = [𝑎, 𝑏𝑚] ∀ 𝑚 ∈ Z. By the descriptions given above, if 𝑚 ∈ Z and 𝑛 ∈ N is

3| [𝑎, 𝑏] |= 2𝑛 and 𝑎𝑚2
𝑛

= 𝑏−2
𝑛 , then we have that: (𝑎𝑚𝑏)2𝑛 = 𝑎𝑚2

𝑛

𝑏2
𝑛 [𝑏, 𝑎𝑚]

2𝑛 (2𝑛−1)
2 =

𝑎𝑚2
𝑛

𝑏2
𝑛 [𝑏, 𝑎𝑚]2𝑛−1 (2𝑛−1) = [𝑏, 𝑎]𝑚2𝑛−1 (2𝑛−1) . Also, note that [𝑎, 𝑏] = [𝑎, 𝑎𝑚𝑏], and since

| [𝑎, 𝑏] |= 2𝑛, then (𝑎𝑚𝑏)2𝑛−1 ≠ 1.Thus, 2𝑛 divides the order of (𝑎𝑚𝑏). Therefore ,

| 𝑎𝑚𝑏 |= 2𝑛+1, for m ∈ {2𝑟 − 1}𝑟∈N , and | 𝑎𝑚𝑏 |= 2𝑛, for 𝑚 ∈ {2𝑟}𝑟∈N.

(4) Suppose that 𝐺 is a finite 𝑝-group of class 2. If G does not have noninner automorphism

of order 𝑝 and 𝐶𝐺 (𝑍 (Φ(𝐺))) ≠ Φ(𝐺). Then, 𝑍 (𝐺) must be cyclic, and by implication,

Page 3



Pure and Applicable Analysis 2022, 2022: 8 https://www.lynnp.org

the derived group 𝐺′ is cyclic.If Z(G) is not cyclic, then Ω1(𝑍 (𝐺)) is not cyclic and so

Ω1(𝑍 (𝐺)) � 𝐺′. Now, if an element t ∈ Ω1(𝑍 (𝐺)) − 𝐺′ a maximal subgroup R of G and

h ∈ 𝐺 − 𝑅′. Then, the map 𝛽 on 𝐺 defined by: (𝑟ℎ𝑑)𝛽 = 𝑟ℎ𝑑𝑡𝑑 ∀ 𝑟 ∈ 𝑅 and 𝑑 ∈ N, is a

noninner automorphism of order 𝑝 which leaves 𝑅 (-a resemblance of Φ(𝐺)) elementwise

fixed. This is contradictory.

(5) Let𝐺1, 𝐺2 be subgroups of G 3 𝐺 = 𝐺1𝐺2 and [𝐺1, 𝐺2] = 1. If ∃ a noninner automorphism

𝛼 ∈ 𝐴𝑢𝑡 (𝐺1), | 𝛼 |= 𝑝 leaving 𝑍 (𝐺1) elementwise fixed then the map 𝜃 on G defined by

(𝑔1𝑔2)𝜃 = 𝑔𝛼1 𝑔2 ∀ 𝑔1 ∈ 𝐺1 and 𝑔2 ∈ 𝐺2 is a noninner automorphism of 𝐺 of order 𝑝 leaving

𝑍 (𝐺) elementwise fixed. By the hypothesis, 𝑞𝛼 = 𝑞 ∀ q ∈ 𝐺1 ∩ 𝐺2 = 𝑍 (𝐺1). Thus, 𝜃 is a

well defined mapping.

3 Proof of Theorem 1

Suppose that 𝐶𝐺 (𝑍 (Φ(𝐺))) = Φ(𝐺) and 𝑝 = 2. By Remark 4, let 𝑍 (𝐺) be cyclic Then, the

implication of Remark 2 is that ∃ 𝑥, 𝑦 ∈ G 3 𝐺′ = 〈[𝑥, 𝑦]〉. Let 𝐺′ = 〈𝑥, 𝑦〉 Then, by remark 2,

𝐺 = 𝐺1𝐶𝐺 (𝐺1). Also, by remark 5, it is possible to construct a non inner automorphism 𝛼 of 𝐺1
of order 2 which leaves 𝑍 (𝐺1) elementwise fixed. Observe that | 𝐺′ |=| 𝐺′

1 |=| [𝑥, 𝑦] |= 2𝑛 for

some integer n > 0.

Now, since 𝐺′ is cyclic and 𝐺′ ≤ 𝑍 (𝐺), 𝑒𝑥𝑝(𝐺/𝑍 (𝐺)) = 𝑒𝑥𝑝(𝐺1/𝑍 (𝐺1)) = 2𝑛 ⇒ 𝑍 (𝐺1) =

〈𝑥2𝑛 , 𝑦2𝑦 , [𝑥, 𝑦]〉 ≤ 𝑍 (𝐺). If 𝑛 = 1, then Φ(𝐺) = 𝐺2 ≤ 𝑍 (𝐺). By this 𝐶𝐺 (𝑍 (Φ(𝐺))) = Φ(𝐺) ⇒

𝐺 = Φ(𝐺). This is not possible. Thus, 𝑛 ≥ 2. 𝑍 (𝐺1) is cyclic. Thus, either 𝑥2
𝑛𝑘 = 𝑦2

𝑛 or

𝑥2
𝑛

= 𝑦2
𝑛𝑘 for some integer 𝑘 . Suppose that 𝑥2𝑛𝑘 = 𝑦2

𝑛 . If 𝑘 ∈ {2𝑑}𝑑∈N then | 𝑥−𝑘 𝑦 |= 2𝑛 and

𝑥 (−𝑘𝑦)2𝑛−1 ∉ 𝑍 (𝐺1) Then, | [𝑥, 𝑦] |=| [𝑥, 𝑥−𝑘 𝑦] |= 2𝑛. Suppose that 𝑣 = 𝑥−𝑘 𝑦, then the map 𝛼 on

𝐺1 defined by: (𝑥𝑠𝑣𝑡𝑧)𝛼 = (𝑥𝑣2𝑛−1)𝑠𝑣𝑡𝑧 ∀ 𝑧 ∈ 𝑍 (𝐺1) and integers 𝑠, 𝑡, is a noninner automorphism

of 𝐺1 of order 2, which leaves 𝑍 (𝐺1) elementwise fixed If 𝑥2
𝑛

= 𝑦2
𝑛

𝑘 and k ∈ {2𝑑}𝑑∈N, a

mapping 𝛼 ∈ 𝐴𝑢𝑡 (𝐺1). If we assume that 𝑥2
𝑛𝑘 = 𝑦2

𝑛 for some integer 𝑘 ∈ {2𝑑 − 1}𝑑∈N. Then,

| 𝑣 |=| 𝑥−𝑘 𝑦 |= 2𝑛+1. Suppose that [𝑥, 𝑦] ∈ 〈𝑥2𝑛〉 Then, 𝑍 (𝐺1) = 〈𝑥2𝑛〉. Thus, | 𝑥2𝑛 |≥ 2𝑛.

Thus, 𝑥2𝑛𝑖 = 𝑣2
𝑛 for some integer 𝑖 Now, | 𝑥2𝑛 |≥ 2𝑛, since 𝑛 ≥ 2, and | 𝑣 |= 2𝑛+1, 𝑖 ∈ {2𝑑}𝑑∈N.

By implication, | 𝑢 |=| 𝑥−𝑖𝑣 |= 2𝑛 and 𝑢2
𝑛−1

∉ 𝑍 (𝐺1) since | [𝑥, 𝑦] |=| [𝑥, 𝑢] |= 2𝑛. Hence,

we have the map 𝛼 on G defined by: (𝑥𝑠𝑢𝑡𝑎)𝛼 = (𝑥𝑢2𝑛−1)𝑠𝑢𝑡𝑎∀𝑎 ∈ 𝑍 (𝐺1) as the automorphism
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𝛼 of 𝐺1 required, s,t ∈ Z. If we assume that [𝑥, 𝑦] ∉ 〈𝑥2𝑛〉, then ⇒ 𝑍 (𝐺1) = 〈[𝑥, 𝑦]〉 = 𝐺′
1,

since 𝑍 (𝐺1) = 〈𝑥2𝑛 , [𝑥, 𝑦]〉 is cyclic. Also, consider: 𝐺1/𝑍 (𝐺1) = 〈𝑥𝑍 (𝐺1)〉.〈𝑦𝑍 (𝐺1)〉 and

| 〈𝑥𝑍 (𝐺1)〉 |=| 〈𝑦𝑍 (𝐺1)〉 |= 2𝑛. This implies that 𝑥−2
𝑛−1𝑘 𝑦2

𝑛−1
= 𝜀 ∉ 𝑍 (𝐺1) and | 𝜀 |= 2 as n ≥ 2.

The map 𝛼 on 𝐺1 defined by (𝑥𝑠𝑦𝑡𝑎)𝛼 = (𝑥𝜀)𝑠 (𝑦𝜀)𝑡𝑧 ∀ z ∈ 𝑍 (𝐺1) is noninner for s,t ∈ N.

Theorem 2: Suppose that G is a 𝑝-group of maximal class and of order 𝑝𝑛 Suppose further that

𝐴𝑢𝑡Φ(𝐺) is the group of all automorphisms of G which centralizes the Frattini quotient. Then,

| 𝐴𝑢𝑡Φ(𝐺) |≤ 𝑝2(𝑛−2) iff G is metabelian.

In order to prove this theorem, it is expedient to consider certain assertions. If G is a 𝑝-group of

maximal class and of order 𝑝𝑛, let Φ = Φ(𝐺) be the Frattini subgroup of G. It has been proved by

Satz (see [6] ) that the order of 𝐴𝑢𝑡Φ(𝐺), the group of all automorphisms of G centralizing 𝐺/Φ,

divides 𝑝2(𝑛−2) . Let the terms of the lower and upper central series of G be respectively denoted

by 𝐿𝑖 (𝐺 and 𝑈𝑖 (𝐺). For n ≥ 4, define the 2-step centralizer 𝐶𝑖 in G to be the centralizer in G of

𝐿𝑖 (𝐺)/𝐿𝑖+2(𝐺) for 2 ≤ 𝑖 ≤ 𝑛 − 2. Also, define 𝑄𝑖 = 𝑄𝑖 (𝐺) by: 𝑄0 = G, 𝑄1 = 𝐶2, 𝑄𝑖 = 𝐿𝑖 (𝐺) for

2 ≤ 𝑖 ≤ n. Let the degree of commutativity 𝛼 = 𝛼(𝐺) of G be defined as the maximum integer 3

[𝑄𝑖, 𝑄 𝑗 ] ≤ 𝑄𝑖+ 𝑗+𝛼 ∀ 𝑖, 𝑗 ≥ 1 if𝑄1 is not abelian and 𝛼 = 𝑛− 3 if𝑄1 is abelian. Let r ∈ 𝐺\⋃𝑛−2
𝑖=2 𝐶𝑖,

𝑟1 ∈ 𝑄1 − 𝑄2 and 𝑟𝑖 = [𝑟𝑖−1, 𝑟] for 2 ≤ 𝑖𝑙𝑒𝑞𝑛 − 1. Notice that {𝑟, 𝑟1} is a generating set for 𝐺 and

𝑄𝑖 (𝐺) = 〈𝑟𝑖, · · · , 𝑟𝑛−1〉, for 1 ≤ 𝑖 ≤ 𝑛 − 1

Theorem A: (see [3]) Let 𝐺 = 〈𝑥, 𝑦〉 be a 2-generated metabelian group. Then, the following

statements are equivalent.

(a) ∀𝑔1, 𝑔2 ∈ 𝐺′, there is an automorphism of 𝐺, which maps 𝑥 to 𝑥𝑔1 and 𝑦 to 𝑦𝑔2.

(b) 𝐺 is nilpotent.

Corollary: Suppose that G is a two-group of maximal class and order 2𝑛. Then, | 𝐴𝑢𝑡Φ(𝐺) =

22(𝑛−2) . By induction, if n ≤ 4, then G is metabelian and so, | 𝐴𝑢𝑡Φ(𝐺) |= 𝑝2(𝑛−2) , by theorem A.

On the other hand, suppose that n ≥ 4 and 𝑝 is odd. Then, we have the following:

Lemma (i): If 𝐺 is a 𝑝-group of maximal class and order 𝑝𝑛. Suppose that: [𝑄2(𝐺), 𝑄2(𝐺)] ≤

𝑍 (𝐺), then [𝑟−1
𝑖
, 𝑟] = 𝑟−1

𝑖+1 [𝑟𝑖+1, 𝑟𝑖] (𝑖 ≥ 2).

Lemma (ii): Let G be a 𝑝-group of maximal class and order 𝑝𝑛, [𝑄𝑡+1, 𝑄𝑡+1] = 1 and [𝑟𝑡 , 𝑟𝑡+1] =

𝑤 ∈ Z(G) for some t ≥ 2. Then,

(a) [𝑟𝑡 , 𝑟𝑖] = 1 for i ≥ t + 2,
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(b) [𝑟𝑡+1, 𝑟𝑡−1] = [𝑟𝑡−1, 𝑟𝑡+1],

(c) [[𝑟𝑡−1, 𝑟𝑡], 𝑟] = [𝑟, [𝑡𝑡 , 𝑟𝑡−1]],

(d) If [𝑟𝑡−1, 𝑟𝑡] = 𝑟
𝑥𝑑
𝑑
𝑟
𝑥𝑑+1
𝑑+1 · · · 𝑟

𝑥𝑛−1
𝑛−1 for d ≥ t+2 then, [𝑟𝑡−1, 𝑟𝑡+1] = 𝑟

𝑥𝑑
𝑑+1 · · · 𝑟

𝑥𝑛−2
𝑛−1 𝑤

−1.

Lemma (iii): Suppose that G is a 𝑝-group of maximal class and of order 𝑝𝑛 and [𝑄2(𝐺), 𝑄2(𝐺)] ≤

Z(G). Suppose further that the map 𝜑 defined by 𝑟𝜑 = 𝑟 and 𝑟𝜑1 = 𝑟1𝑟
−1
2 is an automorphism of G,

then 𝑟𝜑
𝑖
= 𝑟𝑖𝑟

−1
𝑖+1 [𝑟𝑖+1, 𝑟𝑖], i ≥ 2. By induction on G, consider the above corollary for general case of

𝑝, and by the metabelian condition, as in lemmas (i), (ii) & (iii), we have that if G is a 𝑝-group of

maximal class of order 𝑝𝑛. Then, | 𝐴𝑢𝑡Φ(𝐺) |= 𝑝2(𝑛−2) iff G is metabelian, n ∈ Z+.

4 Proof of Results (i)

Proposition 1:(Passman(see[7]))If G is of class 2 with b(G) = 𝑝𝑒 and e < 𝑝 then
⋂{𝑘𝑒𝑟 𝜒 | 𝜒(1) =

𝑝𝑒} = 1.

Proposition 2: Let N C G with G/N a 𝑝-group, and 𝑝 ≠ 2. Let C ∈ 𝐼𝑟𝑟 (𝑁) be invariant in G.

Suppose that every irreducible constituent of C𝐺 has degree ≤ 𝑝C(1) . Then, b(G/N) ≤ 𝑝.

Proof: By extending C to Ĉ ∈ 𝐼𝑟𝑟 (𝐻) with N ⊆ 𝐻 and | 𝐺 : 𝐻 | = 𝑝, and for 𝜑 ∈ 𝐼𝑟𝑟 (𝐻/𝑁) with

𝜑(1) = 𝑝, consider (𝜑Ĉ)𝐺 . ∃ linear 𝜇 ∈ 𝐼𝑟𝑟 (𝐻/𝑁) 3 𝜑𝑥 = 𝜑𝜇 for x ∈ G, with 𝜇 independent of the

choice of 𝜑. And since 𝑝 ≠ 2, 𝜑 is invariant of G.

By proposition (1), let C(1) = 𝑝, then C𝐺 is of degree = b(G)≤ 𝑝2. Therefore, by the Passman’s

result, if 𝑝 is odd, then e < 𝑝. The result thus follows. �

Remark: If 𝑝 = 2, then the assertion is actually false.

5 Proof of Results (ii)

Theorem: Let g ∈ G and let 0 < n ∈ N. It is possible to find the number of nth roots of g in G.

Let C𝑛 (𝑔) = | {𝑡 ∈ 𝐺 : 𝑡𝑛 = 𝑔} |. If the 𝑔𝑐𝑑 ( | 𝐺 |, 𝑛) = 1, an integer v may be chosen 3 nv ≡

1𝑚𝑜𝑑 | 𝐺 |. Hence, if 𝑡𝑛 = 𝑢𝑛, then t = 𝑡𝑛𝑣 = 𝑢𝑛𝑣 = u (since nv ≡ 1𝑚𝑜𝑑 | 𝐺 | ). Thus, C𝑛 (𝑔) ≤ 1 ∀
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𝑔 ∈ 𝐺. Since the map t� 𝑡𝑛 is mono in G, it must also be onto. Thus, we have that C𝑛 (𝑔) = 1 ∀ g

∈ 𝐺. Now, by virtue of the fact that C𝑛 is a class function on G, we write

C𝑛 =
∑︁

𝜒∈𝐼𝑟𝑟 (𝐺)
𝑉𝑛 (𝜒)𝜒,

where 𝑉𝑛 (𝜒) a is uniquely determined complex number.

Lemma A:

𝑉𝑛 = ( 1| 𝐺 | )
∑︁
𝑔∈𝐺

𝜒(𝑔𝑛)

Proof: By the orthogonality relations, we have that:

𝑉𝑛 (𝜒) = [C𝑛, 𝜒] = ( 1| 𝐺 | )
∑︁
𝑔∈𝐺

C𝑛 (𝑔)𝜒(𝑔)

And since

C𝑛 (𝑔)𝜒(𝑔) =
∑︁

𝑡∈𝐺:𝑡𝑛=𝑔
𝜒(𝑡𝑛)

we have

𝑉𝑛 (𝜒) = ( 1| 𝐺 | )
∑︁
𝑡∈𝐺

𝜒(𝑡𝑛)

Replacing t by 𝑡−1, we have that

𝑉𝑛 = ( 1| 𝐺 | )
∑︁
𝑔∈𝐺

𝜒(𝑔𝑛) �

Lemma B: Let A C G and 𝜒 ∈ 𝐼𝑟𝑟 (𝐺) with A ⊆ 𝑘𝑒𝑟 𝜒. By definition of 𝑉𝑛 (𝜒) in lemma A, let

�̂�𝑛 (𝜒) be the corresponding number computed in G/A. Then, 𝑉𝑛 (𝜒) = �̂�𝑛 (𝜒).

Proof:

�̂�𝑛 = ( 1
| 𝐺 : 𝐴 | )

∑︁
𝐴𝑔∈𝐺/𝐴

𝜒((𝐴𝑔)𝑛) = ( 1
| 𝐺 : 𝐴 | ) (

1
𝐴
)
∑︁
𝑔∈𝐺

𝜒(𝐴𝑔𝑛) = ( 1| 𝐺 | )
∑︁
𝑔∈𝐺

𝜒(𝑔𝑛) = 𝑉𝑛 (𝜒).�

Theorem C: (Alperin - Feit - Thompson) (see [7]) Suppose that G is a 2-group containing exactly

k involutions. If k ≡ 1𝑚𝑜𝑑22, then either 𝐺 is cyclic or | 𝐺 : 𝐺′ |= 22.
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Lemma D: Let 𝑀 ⊆ G. Suppose that 𝜒 is a character of G. Then, [𝜒𝑀 , 𝜒𝑀] ≤| 𝐺 : 𝑀 | [𝜒, 𝜒]

and [𝜒𝑀 , 𝜒𝑀] =| 𝐺 : 𝑀 | [𝜒, 𝜒] iff 𝜒(𝑔) = 0 ∀𝑔 ∈ 𝐺\ 𝑀 .

Proof: Consider:

| 𝑀 | [𝜒𝑀 , 𝜒𝑀] =
∑

𝑚∈𝑀 | 𝜒(𝑚) |2 ≤ ∑
𝑔∈𝐺 | 𝜒(𝑔) |2 = | 𝐺 | [𝜒, 𝜒], where | 𝜒(𝑔) |2≥ 0, for 𝑔

∈ 𝐺\ 𝑀 . Now, if 𝜒(𝑔) = 0 ∀ 𝑔 ∈ G \ 𝑀 . Then,
∑

𝑔∈𝐺 | 𝜒(𝑔) |2 = 0. Also, since a perfect square

is non-negative, this forces
∑

𝑚∈𝑀 | 𝜒(𝑚) |2 = 0⇒ [𝜒𝑚, 𝜒𝑚] = | 𝐺 : 𝑀 | [𝜒, 𝜒] iff 𝜒(𝑔) = 0. �

Lemma E: Let 𝜒 ∈ 𝐼𝑟𝑟 (𝐺) and let 𝑐 be a linear character of 𝐺 with 𝑐𝑛 = 1𝐺 . Then, 𝑉𝑛 (𝜒) =

𝑉𝑛 (𝑐𝜒).

Proof: Since 𝜒 ∈ 𝐼𝑟𝑟 (𝐺) and 𝑐 is linear in 𝐺 with 𝑐𝑛 = 1𝐺 , then 𝑐𝜒 ∈ 𝐼𝑟𝑟 (𝐺). Thus,

𝑉𝑛 (𝑐𝜒) = ( 1| 𝐺 | )
∑︁
𝑔∈𝐺

(𝑐𝜒) (𝑔𝑛) = ( 1| 𝐺 | )
∑︁
𝑔

𝑐(𝑔𝑛)𝜒) (𝑔𝑛) = ( 1| 𝐺 | )
∑︁

𝜒(𝑔𝑛) = 𝑉𝑛 (𝜒)

𝑁𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 : 𝑐(𝑔𝑛) = 𝑐(𝑔)𝑛 = 𝑐𝑛 (𝑔) = 1. �

Proof of Theorem C: Suppose that G is abelian, then, clearly, it must be cyclic. By induction on

G. Suppose that G is not abelian. If Z(G) is not cyclic, choose H ⊆ Z(G), elementary abelian of

order 4. Then, the set {𝑦 ∈ 𝐺 | 𝑦2 = 1} is a union of cosets of H and hence (k + 1) is a multiple

of 4. ⇒⇐. Hence, Z(G) is cyclic and so, G contains the unique minimal subgroup N of order 2.

Now since 𝐺′ > 1, then N ⊆ 𝐺′. Also, G/N is not cyclic since G is nonabelian. If G/N satisfies the

hypothesis of the theorem, then | 𝐺 : 𝐺′ | = | (𝐺/𝑁) : (𝐺/𝑁)′ | = 4, by induction. Now, assuming

that the number of involutions in G/N is not ≡ 1𝑚𝑜𝑑22, we have that:∑︁
𝜒∈𝐼𝑟𝑟 (𝐺)

𝑉2(𝜒)𝜒(1) = 𝑘 + 1 = 2𝑚𝑜𝑑22

and ∑︁
𝜒∈𝐼𝑟𝑟 (𝐺):𝑁⊆𝑘𝑒𝑟 𝜒

𝑉2(𝜒)𝜒(1)𝑛𝑜𝑡 ≡ 2𝑚𝑜𝑑22

and so, ∑︁
𝜒∈𝐼𝑟𝑟 (𝐺):𝑁*𝑘𝑒𝑟 𝜒

𝑉2(𝜒)𝜒(1)𝑛𝑜𝑡 ≡ 0𝑚𝑜𝑑22 · · · (∗)

Suppose that 𝔏 is a group of linear characters c of G which satisfies 𝑐2 = 1𝐺 .

Then, for 𝜒 ∈ 𝐼𝑟𝑟 (𝐺), we have that 𝑐𝜒 ∈ 𝐼𝑟𝑟 (𝐺) and since N ⊆ 𝑘𝑒𝑟 (𝑐𝜒).
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Hence, 𝔏 permutes {𝜒 ∈ 𝐼𝑟𝑟 (𝐺) | 𝑁 ⊆ 𝑘𝑒𝑟 𝜒} and partitions this set into orbits 𝔖𝑖. By lemma E,

𝑉2(𝜒) is constant on each orbit as is 𝜒(1). Now, | 𝔖 | is a power of 2. From (*) ∃ 𝜒 ∈ 𝐼𝑟𝑟 (𝐺) 3

(i) N ⊆ 𝑘𝑒𝑟 𝜒

(ii) 𝑉2(𝜒) ≠ 0,

(iii) 𝜒(1) | 𝔖 |≤ 2.

Taking𝔖 as the orbit containing 𝜒. Now, since N * 𝑘𝑒𝑟 𝜒, we have that 𝑘𝑒𝑟 𝜒 = 1. G is not abelian,

thus 𝜒(1) > 1 and thus, 𝜒(1) = 2, and | 𝔖 | = 1. This implies that 𝑐𝜒 = 𝜒, ∀𝑐 ∈ 𝔏. Let T = Φ(𝐺),

the Frattini subgroup. Suppose that g ∈ 𝐺\ T. Then 𝑒𝑥𝑖𝑠𝑡𝑠 c ∈ 𝔏 for which c(g) ≠ 1 and we have

that 𝜒(𝑔) = 0. By lemma D, we have that | 𝐺 : 𝑇 | = [𝜒𝑇 , 𝜒𝑇 ] ≤ 𝜒(1)2 = 22. Observe that G is

noncyclic; | 𝐺,𝑇 |≥ 4, and so, 4 = 𝜒(1)2 = [𝜒𝑄 , 𝜒𝑄] = [𝐺,𝑇] Thus, we must have 𝜒𝑇 = 2𝜑, where

𝜑 is a faithful linear character of T. Now since 𝑉2(𝜒) ≠ 0, 𝜒 ∈ R. Hence, 𝜑 is also real. Thus,

| 𝑄 |≤ 2⇒| 𝐺 |≤ 23 and so G � 𝐷23 or 𝑄23 . In either case, | 𝐺,𝐺′ |= 22 .�

Applying theorem C, we have that if 𝔅 is the set of the elements of group G 3 𝔅 = {𝑏 :| 𝑏 |= 𝑝},

then | 𝔅 |≡ 1𝑚𝑜𝑑𝑝𝑎, 𝑎 ∈ N.

Remark: Theorem (O. Tausssky)(see [6]). The only nonabelian 2-groups G for which | 𝐺,𝐺′ |=

22 are the dihedral, semidihedral, and generalized quaternion groups, where the number of involu-

tions is congruent to 1 modulo 4.
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