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Abstract

Suppose that G is a non-abelian p-group, it was shown that if G is of class 2 then, there
exists a noninner automorphism of order p such that Cg(Z(®(G))) = ©(G) [1]. Moreover,
if G is of maximal class of order p", Fouladi S. [13] showed that the order of the group of all

automorphisms of G centralizes the Frattini quotient and is not greater than p2("~2)

if and only if
G is metabelian. In this paper, we show that if b(G) = p? and p # 2, then N{kery | x(1) = p*}
= 1. (Here, b(G) = max(cd(G)) and cd(G)= {x(1) | x € Irr(G)}). Suppose further that G is

2a-1

a p-group with Frattini factor group of order > p we show that the number of elements of

order p in G is congruent to 1 modulo p% 1 < a € N.
Keywords: Finite p-group, Automorphism group, Maximal class, Nilpotent groups Noninner

automorphisms, p-Groups of class 2, Metabelian group.

1 Introduction

As a result of the recent modern developments in the concepts of finite p-groups, there exists
a conjecture of which many contributions have been made through various personalities such as
W.Gaschiitz [5], M. Deaconescu and G. Silberberg [4], A. Abdollahi [1], and a host of others. The
conjecture (see [9]) establishes the fact that G has a noninner automorphism of order p [10]. Also,

by a cohomological result of P. Schmid, G admits a noninner automorphism of order p whenever G
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is regular . Furthermore, a number of studies of the automorphism groups of p-groups of maximal
class have been made. For instance , Juhdsz and Malinowska (see [8] and [10]) concentrate mostly
on small automorphism groups. Large automorphism groups were considered in appreciable extents
by Shirin Fouladi[13], who was able to show that if G is non-cyclic and of maximal class and of
order p”, then | Aut®(G) |= p*"~?) iff G is a metabelian group. Considering the concepts from
the character point of view ,observation is made for G that if it is of class 2 and suppose that b(G) =
p? and p # 2. By definition, if y is a character of G , then ker(y) = {x € G | x(x) = (1)} is the
kernel of a character y, where y (1) is the degree of a character y of G. Then, the intersection of
the ker(y) of which the degree equals p? is trivial. We also consider G with Frattini factor group

of order not less than p>*~!, a € N,

2 Statement of Main Result

(a) If G is of class 2, and suppose that b(G) = p% . If p # 2 then , N{kery | x(1) = p?} =1,
where b(G) = max(cd(G)) and cd(G) = {x(1) | x € Irr(G).

(b) Suppose that G is a p-group with Frattini factor group of order > p>*~! @ € Z . Then the

number of elements of order p in G is = 1 mod p*“.

Definitions:

(a) Frattini subgroup is the intersection of all maximal subgroups of G. This is denoted by

(G).

(b) A group Gisof maximalclassif| G |< p",n>3andG =Go > G| = ---G, = Gy = {e}.

Then, we say that G is of class n and write cl(G) =n > 1.

(c) A group G is metabelian if the quotient group G/Z(G), is abelian. This implies that the
commutator subgroup G’ is contained in Z(G). Such group possesses a normal subgroup N

such that N and G /N are both abelian. The following are metabelian;

(1) All abelian groups.

(i1) All generalized dihedral groups.
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(d)

(i11) All groups of order less than 24.

(iv) All metacyclic groups.

If G is nilpotent of class 2 then, every commutator [x, y] of G, lies in the centre of G, i.e for

any x,y € G, [x,y] commutes with any z € G.

Theorem 1: Every finite non-abelian p-group G has a noninner automorphism of order p leaving

either the Frattini subgroup ®(G) or Q;(Z(G)) elementwise fixed, i.e.Cg(Z(P(G))) = ®(G) if

G is of class 2. The following remarks were applied in the proof of theorem 1.

)

)

3)

4)

Suppose that G is a group. Suppose further thatG’ the commutator subgroup of G is a finite
cyclic p-group for some prime p, then G’ is generated by [x, y] for some x,y € G. Now,
G’ is abelian and the orders ofx,y € G are powers of p, then G’ has an exponent which is
given by: max| [x,y] |: x,y € G. By the virtue of the fact that G’ is a finite cyclic group, it
implies that exp(G’) =| G’ |. Clearly, one of the elements of the set [x, y] : x,y € G is the

generator of G’.

From (1), we have that G’ =< [x,y] >,x,y € G. Now, for G to be finite and nilpotent
of class 2, we have that G =< x,y > Cg(< x,y >) since every commutator [x, y] lies in
Z(G) [1]. Observe that for any g € G, [x,g] = [x,y]" and [y, g] = [x,y]", where u and
v are integers. Here, we have that [x,y™x"g] = 1 and [y, y “x"g] = 1. This is because

[x,x"] = [y,y™] =1. And so, y™“x"g € Co(< x,y >) = G =<x,y > Cg(< x,y >).

Suppose that G is a nilpotent group of class 2, and a,b € G > 0 < k € Z Observe
that [a,b] lies in the center of G. Then (ab)* = akbk[b,a]%k(k_l) and [a,b]" =
[a™,b] = [a,b™] V m € Z. By the descriptions given above, if m € Z and n € N is
5| [a,b] |= 2" and @™ = b~2", then we have that: (a™b)> = a™'b2"[b, "] T~ =
a"?" p2" [b,a™?" "D = [b,a]™?" ' @"-D_ Also, note that [a,b] = [a,a™b], and since
| [a,b] |= 2", then (a™b)*'~' # 1.Thus, 2" divides the order of (a™b). Therefore ,

| a™b |= 2" form € {2r — 1},en, and | @b |= 2", for m € {2r} en.

Suppose that G is a finite p-group of class 2. If G does not have noninner automorphism

of order p and C;(Z(®(G))) # ©(G). Then, Z(G) must be cyclic, and by implication,
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the derived group G’ is cyclic.If Z(G) is not cyclic, then Q;(Z(G)) is not cyclic and so
Q1(Z(G)) £ G'. Now, if an element t € Q;(Z(G)) — G’ a maximal subgroup R of G and
h € G — R’. Then, the map 8 on G defined by: (rh%)? = rh%tVr e Randd € N, is a
noninner automorphism of order p which leaves R (-a resemblance of ®(G)) elementwise

fixed. This is contradictory.

(5) Let G, G, be subgroupsof G5 G = G1Gj and [G 1, G,] = 1. If 3 a noninner automorphism
a € Aut(Gy), | @ |= p leaving Z(G) elementwise fixed then the map 6 on G defined by
(g182)% = 8782V g1 € Gy and g, € G is a noninner automorphism of G of order p leaving
Z(G) elementwise fixed. By the hypothesis, ¢g* = ¢V qe G; NG, = Z(Gy). Thus, 8 is a

well defined mapping.

3 Proof of Theorem 1

Suppose that Cg(Z(P(G))) = ©(G) and p = 2. By Remark 4, let Z(G) be cyclic Then, the
implication of Remark 2 is that 3 x,y € G 3 G’ = ([x,y]). Let G’ = (x,y) Then, by remark 2,
G = GCg(Gy). Also, by remark 5, it is possible to construct a non inner automorphism « of G
of order 2 which leaves Z(G) elementwise fixed. Observe that | G’ |=| G| |=| [x,y] |= 2" for
some integer n > 0.

Now, since G’ is cyclic and G' < Z(G), exp(G/Z(G)) = exp(G/Z(G,)) = 2" = Z(Gy) =
(x*,y%, [x,y]) < Z(G). If n = 1, then ®(G) = G? < Z(G). By this C(Z(®(G))) = ®(G) =
G = ®(G). This is not possible. Thus, n > 2. Z(G,) is cyclic. Thus, either x*'* = y?" or
x" = y¥'¥ for some integer k. Suppose that x>'% = y2". If k € {2d}4en then | x ™%y |= 2" and
)c(—lcy)zw1 ¢ Z(G1) Then, | [x,y] |=| [x,x ¥y] |= 2". Suppose that v = x Xy, then the map @ on
G, defined by: (x*v'z)® = (xv?"')v'z ¥ z € Z(G,) and integers s, £, is a noninner automorphism
of G| of order 2, which leaves Z(G;) elementwise fixed If x*' = y*'k and k € {2d}gen, a
mapping @ € Aut(Gp). If we assume that x>'% = y2" for some integer k € {2d — 1}4en. Then,
| v |=] x ¥y |= 2"*1. Suppose that [x,y] € (x*") Then, Z(G;) = (x?"). Thus, | x>* |> 2"
Thus, x2* = v?" for some integer i Now, | x> [> 2", since n > 2, and | v |= 2™*!, i € {2d}gen.
By implication, | u |=| x™v |= 2" and u? ¢ Z(Gy) since | [x,y] |=| [x,u] |= 2". Hence,

we have the map @ on G defined by: (x*u'a)® = (xu®"")*u'aVa € Z(G) as the automorphism
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@ of Gy required, s,t € Z. If we assume that [x,y] ¢ (x*"), then = Z(G;) = ([x,y]) = G/,
since Z(G1) = (x*", [x,y]) is cyclic. Also, consider: G{/Z(G1) = (xZ(G1)).{yZ(G})) and
| (xZ(G1)) |=| (yZ(G)) |=2". This implies that x=2" ¥y?" "' =g ¢ Z(Gy) and | & |=2 asn > 2.
The map @ on G defined by (x*y’a)® = (x&)*(ye)'zV z € Z(Gy) is noninner for s,t € N.
Theorem 2: Suppose that G is a p-group of maximal class and of order p" Suppose further that
Aut®(G) is the group of all automorphisms of G which centralizes the Frattini quotient. Then,
| Aut®(G) |< p*™=2) iff G is metabelian.

In order to prove this theorem, it is expedient to consider certain assertions. If G is a p-group of
maximal class and of order p”, let ® = ®(G) be the Frattini subgroup of G. It has been proved by
Satz (see [6] ) that the order of Aut®(G), the group of all automorphisms of G centralizing G /®,

divides p2(n=2)

. Let the terms of the lower and upper central series of G be respectively denoted
by L;(G and U;(G). For n > 4, define the 2-step centralizer C; in G to be the centralizer in G of
Li(G)/Li2(G) for2 <i < n-2. Also, define Q; = Q;(G) by: Qo =G, Q1 =C,, Q; = L;(G) for
2 < i < n. Let the degree of commutativity @ = @(G) of G be defined as the maximum integer >
[Qi,0;] < Qivjsa Vi, j = 1if Q1 is not abelian and @ = n — 3 if Q; is abelian. Letr € G\ U C;,
ri€Qy—Qrandr; = [ri—1,r] for 2 < ileqn — 1. Notice that {r,r} is a generating set for G and
Q:/(G)=Ariy-- ,rp_1),forl <i<n-1

Theorem A: (see [3]) Let G = (x,y) be a 2-generated metabelian group. Then, the following

statements are equivalent.

(a) Vg1, g2 € G’, there is an automorphism of G, which maps x to xg; and y to ygs.
(b) G is nilpotent.

Corollary: Suppose that G is a two-group of maximal class and order 2". Then, | Aut®(G) =
22(n=2) By induction, if n < 4, then G is metabelian and so, | Aur®(G) |= p>*=2), by theorem A.
On the other hand, suppose that n > 4 and p is odd. Then, we have the following:

Lemma (i): If G is a p-group of maximal class and order p”. Suppose that: [Q2(G), 02(G)] <
Z(G), then [rl._l,r] = ri_+11 [ris1,ri] (@ = 2).

Lemma (ii): Let G be a p-group of maximal class and order p", [Q;+1, Qs+1] = 1 and [ry, r41] =

w € Z(QG) for some t > 2. Then,
@) [reri]=1fori>t+2,
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() [rs1,r-1] = [re=1, 11411,
©) [lr=1,7m:].r] = [, [t 7111,

— - Xd Xd+l Xn-1 — Xd Xn-2, ,—1
A If [re—1,re] = rfr gyl - ford > 2 then, [r—y, rea ] =75, - " Fw™.

Lemma (iii): Suppose that G is a p-group of maximal class and of order p” and [Q2(G), 02(G)] <
Z(G). Suppose further that the map ¢ defined by ¥ = r and r‘f =riry I'is an automorphism of G,
then rl‘.p = rir;ll [ri+1,7i],1> 2. By induction on G, consider the above corollary for general case of
p, and by the metabelian condition, as in lemmas (i), (ii) & (iii), we have that if G is a p-group of

maximal class of order p". Then, | Autr®(G) |= p>*~? iff G is metabelian, n € Z*.

4 Proof of Results (i)

Proposition 1:(Passman(see[7]))If G is of class 2 with b(G) = p¢ and e < p then ({kery | x(1) =
pr=1

Proposition 2: Let N < G with G/N a p-group, and p # 2. Let C € Irr(N) be invariant in G.
Suppose that every irreducible constituent of C has degree < p¢(!). Then, b(G/N) < p.

Proof: By extending Cto C € Irr(H) withNC Hand | G : H | = p, and for ¢ € Irr(H/N) with
¢(1) = p, consider (¢C)C. T linear u € Irr(H/N) 3 ¢* = pu for x € G, with u independent of the
choice of ¢. And since p # 2, ¢ is invariant of G.

By proposition (1), let C(1) = p, then CY is of degree = b(G)< p?. Therefore, by the Passman’s
result, if p is odd, then e < p. The result thus follows. O

Remark: If p =2, then the assertion is actually false.

5 Proof of Results (ii)

Theorem: Letge GandletO < n € N. Itis possible to find the number of nth roots of g in G.
Let C,(g) =|{t e G :t" =g} | Ifthe gcd(| G |,n) =1, an integer v may be chosen > nv =

Imod | G |. Hence, if t" = u", then t =" =™ =u (since nv = lmod | G | ). Thus, C,(g) <1V
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g € G. Since the map t ~— " is mono in G, it must also be onto. Thus, we have that C,(g) =1V g
€ G. Now, by virtue of the fact that C, is a class function on G, we write

Cn = Z V(X)X

x€lrr(G)

where V,,(y) a is uniquely determined complex number.
Lemma A:

V, = (|—> D x(@"

geG

Proof: By the orthogonality relations, we have that:

Valx) = (G x] G |> 2. Crl@)x(s)

geG

And since
Cilax(e) = ), X"
teG:t"=g
we have
Vax) = (=) D x (™
| G | teG
Replacing t by !, we have that
Vo = (7)) x(g" O
| G|
geG
Lemma B: Let A < G and y € Irr(G) with A C kery. By definition of V,,(y) in lemma A, let

V,,(x) be the corresponding number computed in G/A. Then, V,,(x) = V,(x).
Proof:

vn:<|G_ ) 2 x4 = (g

AgeG /A

Ag) = (57 |> 2, X(8") =Valx) .0

geG

Theorem C: (Alperin - Feit - Thompson) (see [7]) Suppose that G is a 2-group containing exactly

k involutions. If k = 1mod2?, then either G is cyclicor | G : G’ |= 22,

Page 7



Pure and Applicable Analysis 2022, 2022: 8 https://www.lynnp.org

Lemma D: Let M C G. Suppose that y is a character of G. Then, [y, ym] <| G : M | [x, x]
and [xar, xul = G : M | [x, x]iff x(g) =0Vg € G\ M.

Proof: Consider:

| M| [xms xm] = Zmen | x(m) P < Spei | x(8) P =1 G | [y, x], where | x(g) [°= 0, for g
€ G\ M. Now, if x(g) =0V g € G\ M . Then, X, | x(g) |> = 0. Also, since a perfect square
is non-negative, this forces Y.,,cps | x(m) > =0= [xm>xml =1 G : M | [x, x]iff x(g) =0. O
Lemma E: Let y € Irr(G) and let ¢ be a linear character of G with ¢" = 1. Then, V,(x) =
Va(ex).

Proof: Since y € Irr(G) and c is linear in G with ¢" = 1g, then cy € Irr(G). Thus,

Valex) = () 3 (e (g = (=

a1 2 )Z(@M@rw

) > x(8") = Valx)

|G| |G |

Note that : c(g")=c(g)"=c"(g)=1. O

Proof of Theorem C: Suppose that G is abelian, then, clearly, it must be cyclic. By induction on
G. Suppose that G is not abelian. If Z(G) is not cyclic, choose H C Z(G), elementary abelian of
order 4. Then, the set {y € G | y> = 1} is a union of cosets of H and hence (k + 1) is a multiple
of 4. =«. Hence, Z(G) is cyclic and so, G contains the unique minimal subgroup N of order 2.
Now since G’ > 1, then N C G’. Also, G/N is not cyclic since G is nonabelian. If G/N satisfies the
hypothesis of the theorem, then | G : G’ | =| (G/N) : (G/N)’ | =4, by induction. Now, assuming

that the number of involutions in G/N is not = 1mod?22, we have that:

Z Va(y)x(1) = k + 1 = 2mod?2>

x€lrr(G)
and
Z Va(x)x(1)not = 2mod2*
x€lrr(G):NCkery
and so,

Va(x)x (Dnot = Omod?2? - - - (%)
X€Irr(G):Ngkery

Suppose that £ is a group of linear characters ¢ of G which satisfies ¢? = 1.

Then, for y € Irr(G), we have that cy € Irr(G) and since N C ker(cy).
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Hence, & permutes {y € Irr(G) | N C kery} and partitions this set into orbits S;. By lemma E,

Va(x) is constant on each orbit as is y(1). Now, | & | is a power of 2. From (*) 3 y € Irr(G) >

(1) N C kery

(i) Va(x) #0,

(i) (1) | S|<2.
Taking S as the orbit containing y. Now, since N ¢ ker y, we have that ker y = 1. G is not abelian,
thus y(1) > 1 and thus, y(1) =2, and | & | = 1. This implies that cy = y, Vc € &. Let T = ®(G),
the Frattini subgroup. Suppose that g € G\ T. Then exists ¢ € & for which c(g) # 1 and we have
that y(g) = 0. By lemma D, we have that | G : T | = [x7, xr] < x(1)? = 22. Observe that G is
noncyclic; | G, T |> 4, and so, 4 = x(1)? = [xg, xo] = [G, T] Thus, we must have y7 = 2¢, where
¢ is a faithful linear character of T. Now since V>(y) # 0, ¥ € R. Hence, ¢ is also real. Thus,
| Q|<2=| G |<2*andso G = Dy or Qn. Ineither case, | G, G’ |=2° .00
Applying theorem C, we have that if B is the set of the elements of group G> B = {b :| b |= p},
then | B |= 1lmodp®, a € N.
Remark: Theorem (O. Tausssky)(see [6]). The only nonabelian 2-groups G for which | G, G’ |=

22 are the dihedral, semidihedral, and generalized quaternion groups, where the number of involu-

tions is congruent to 1 modulo 4.
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