Finite p -Groups With Noninner Automorphisms of Order p

S.A. Adebisi

Faculty of Science, Department of Mathematics, University of Lagos, Akoka, Yaba, Nigeria Corresponding author: adesinasunday@yahoo.com

Abstract

Suppose that G is a non-abelian p -group, it was shown that if G is of class 2 then, there exists a noninner automorphism of order p such that $C_G(Z(\Phi(G))) = \Phi(G)$ [1]. Moreover, if G is of maximal class of order p^n , Fouladi S. [13] showed that the order of the group of all automorphisms of G centralizes the Frattini quotient and is not greater than $p^{2(n-2)}$ if and only if G is metabelian. In this paper, we show that if $b(G) = p^2$ and $p \neq 2$, then $\bigcap \{ \ker \chi \mid \chi(1) = p^2 \}$ = 1. (Here, $b(G)$ = max(cd(G)) and cd(G)= { $\chi(1) | \chi \in Irr(G)$ }). Suppose further that G is a p-group with Frattini factor group of order $\geq p^{2a-1}$ we show that the number of elements of order p in G is congruent to 1 modulo p^a 1 $\le a \in \mathbb{N}$.

Keywords: Finite p -group, Automorphism group, Maximal class, Nilpotent groups Noninner automorphisms, p -Groups of class 2, Metabelian group.

1 Introduction

As a result of the recent modern developments in the concepts of finite p -groups, there exists a conjecture of which many contributions have been made through various personalities such as W.Gaschütz [5], M. Deaconescu and G. Silberberg [4], A. Abdollahi [1], and a host of others. The conjecture (see [9]) establishes the fact that G has a noninner automorphism of order p [10]. Also, by a cohomological result of P. Schmid, G admits a noninner automorphism of order p whenever G is regular. Furthermore, a number of studies of the automorphism groups of p -groups of maximal class have been made. For instance , Juhász and Malinowska (see [8] and [10]) concentrate mostly on small automorphism groups. Large automorphism groups were considered in appreciable extents by Shirin Fouladi[13], who was able to show that if G is non-cyclic and of maximal class and of order pⁿ, then | $Aut^{\Phi}(G)$ |= $p^{2(n-2)}$ iff G is a metabelian group. Considering the concepts from the character point of view , observation is made for G that if it is of class 2 and suppose that $b(G)$ = p^2 and $p \neq 2$. By definition, if χ is a character of G, then $ker(\chi) = \{x \in G \mid \chi(x) = \chi(1)\}\$ is the kernel of a character χ , where $\chi(1)$ is the degree of a character χ of G. Then, the intersection of the $ker(\chi)$ of which the degree equals p^2 is trivial. We also consider G with Frattini factor group of order not less than p^{2a-1} , $a \in \mathbb{N}$.

2 Statement of Main Result

- (a) If G is of class 2, and suppose that $b(G) = p^2$. If $p \neq 2$ then, $\bigcap \{ \ker \chi \mid \chi(1) = p^2 \} = 1$, where $b(G) = max(cd(G))$ and $cd(G) = \{\chi(1) | \chi \in Irr(G)\}.$
- (b) Suppose that G is a p-group with Frattini factor group of order $\geq p^{2a-1}$ $a \in \mathbb{Z}$. Then the number of elements of order p in G is $\equiv 1 \mod p^a$.

Definitions:

- (a) Frattini subgroup is the intersection of all maximal subgroups of G . This is denoted by $\Phi(G)$.
- (b) A group G is of maximal class if $|G| \leq p^n, n \geq 3$ and $G = G_0 \geq G_1 \geq \cdots G_n \geq G_{n+1} = \{e\}.$ Then, we say that G is of class *n* and write $cl(G) = n > 1$.
- (c) A group G is metabelian if the quotient group $G/Z(G)$, is abelian. This implies that the commutator subgroup G' is contained in $Z(G)$. Such group possesses a normal subgroup N such that N and G/N are both abelian. The following are metabelian;
	- (i) All abelian groups.
	- (ii) All generalized dihedral groups.
- (iii) All groups of order less than 24.
- (iv) All metacyclic groups.
- (d) If G is nilpotent of class 2 then, every commutator $[x, y]$ of G, lies in the centre of G, i.e for any $x, y \in G$, $[x, y]$ commutes with any $z \in G$.

Theorem 1: Every finite non-abelian p -group G has a noninner automorphism of order p leaving either the Frattini subgroup $\Phi(G)$ or $\Omega_1(Z(G))$ elementwise fixed, i.e. $C_G(Z(\Phi(G))) = \Phi(G)$ if G is of class 2. The following remarks were applied in the proof of theorem 1.

- (1) Suppose that G is a group. Suppose further that G' the commutator subgroup of G is a finite cyclic p-group for some prime p, then G' is generated by $[x, y]$ for some $x, y \in G$. Now, G' is abelian and the orders of x, $y \in G$ are powers of p, then G' has an exponent which is given by: $max \mid [x, y] \mid : x, y \in G$. By the virtue of the fact that G' is a finite cyclic group, it implies that $exp(G') = | G' |$. Clearly, one of the elements of the set $[x, y] : x, y \in G$ is the generator of G' .
- (2) From (1), we have that $G' = \{x, y\} > x, y \in G$. Now, for G to be finite and nilpotent of class 2, we have that $G = \langle x, y \rangle C_G(\langle x, y \rangle)$ since every commutator $[x, y]$ lies in $Z(G)$ [1]. Observe that for any $g \in G$, $[x, g] = [x, y]^u$ and $[y, g] = [x, y]^v$, where u and v are integers. Here, we have that $[x, y^{-u}x^{\nu}g] = 1$ and $[y, y^{-u}x^{\nu}g] = 1$. This is because $[x, x^{\nu}] = [y, y^{-\mu}] = 1$. And so, $y^{-\mu} x^{\nu} g \in C_G(\langle x, y \rangle) \Rightarrow G = \langle x, y \rangle C_G(\langle x, y \rangle)$.
- (3) Suppose that G is a nilpotent group of class 2, and $a, b \in G \ni 0 \lt k \in \mathbb{Z}$ Observe that $[a, b]$ lies in the center of G. Then $(ab)^k = a^k b^k [b, a]^{\frac{1}{2}k(k-1)}$ and $[a, b]^m =$ $[a^m, b] = [a, b^m] \forall m \in \mathbb{Z}$. By the descriptions given above, if $m \in \mathbb{Z}$ and $n \in \mathbb{N}$ is $\exists |[a, b]| = 2^n$ and $a^{m2^n} = b^{-2^n}$, then we have that: $(a^m b)^{2^n} = a^{m2^n} b^{2^n} [b, a^m] \frac{2^n (2^n - 1)}{2} =$ $a^{m2^n}b^{2^n}[b, a^m]^{2^{n-1}(2^n-1)} = [b, a]^{m2^{n-1}(2^n-1)}$. Also, note that $[a, b] = [a, a^m b]$, and since \vert [a, b] $\vert z \vert 2^n$, then $(a^m b)^{2^n-1} \neq 1$. Thus, 2^n divides the order of $(a^m b)$. Therefore, $| a^m b | = 2^{n+1}$, for $m \in \{2r - 1\}_{r \in \mathbb{N}}$, and $| a^m b | = 2^n$, for $m \in \{2r\}_{r \in \mathbb{N}}$.
- (4) Suppose that G is a finite p -group of class 2. If G does not have noninner automorphism of order p and $C_G(Z(\Phi(G))) \neq \Phi(G)$. Then, $Z(G)$ must be cyclic, and by implication,

the derived group G' is cyclic.If $Z(G)$ is not cyclic, then $\Omega_1(Z(G))$ is not cyclic and so $\Omega_1(Z(G)) \nleq G'$. Now, if an element $t \in \Omega_1(Z(G)) - G'$ a maximal subgroup R of G and $h \in G - R'$. Then, the map β on G defined by: $(rh^d)^\beta = rh^d t^d \forall r \in R$ and $d \in \mathbb{N}$, is a noninner automorphism of order p which leaves R (-a resemblance of $\Phi(G)$) elementwise fixed. This is contradictory.

(5) Let G_1, G_2 be subgroups of $G \ni G = G_1 G_2$ and $[G_1, G_2] = 1$. If \exists a noninner automorphism $\alpha \in Aut(G_1), |\alpha| = p$ leaving $Z(G_1)$ elementwise fixed then the map θ on G defined by $(g_1g_2)^{\theta} = g_1^{\alpha}$ $_1^{\alpha}$ g₂ \forall g₁ \in G_1 and g₂ \in G_2 is a noninner automorphism of G of order p leaving $Z(G)$ elementwise fixed. By the hypothesis, $q^{\alpha} = q \ \forall \ q \in G_1 \cap G_2 = Z(G_1)$. Thus, θ is a well defined mapping.

3 Proof of Theorem 1

Suppose that $C_G(Z(\Phi(G))) = \Phi(G)$ and $p = 2$. By Remark 4, let $Z(G)$ be cyclic Then, the implication of Remark 2 is that $\exists x, y \in G \ni G' = \langle [x, y] \rangle$. Let $G' = \langle x, y \rangle$ Then, by remark 2, $G = G_1 C_G(G_1)$. Also, by remark 5, it is possible to construct a non inner automorphism α of G_1 of order 2 which leaves $Z(G_1)$ elementwise fixed. Observe that $|G'|=|G_1'|$ $\binom{1}{1}$ |=| [x, y] |= 2^n for some integer $n > 0$.

Now, since G' is cyclic and $G' \leq Z(G)$, $exp(G/Z(G)) = exp(G_1/Z(G_1)) = 2^n \Rightarrow Z(G_1) =$ $\langle x^{2^n}, y^{2^y}, [x, y] \rangle \leq Z(G)$. If $n = 1$, then $\Phi(G) = G^2 \leq Z(G)$. By this $C_G(Z(\Phi(G))) = \Phi(G) \Rightarrow$ $G = \Phi(G)$. This is not possible. Thus, $n \ge 2$. $Z(G_1)$ is cyclic. Thus, either $x^{2^n k} = y^{2^n}$ or $x^{2^n} = y^{2^n k}$ for some integer k. Suppose that $x^{2^n k} = y^{2^n}$. If $k \in \{2d\}_{d \in \mathbb{N}}$ then $|x^{-k}y| = 2^n$ and $(x^{\{-ky\}})^{2^{n-1}} \notin Z(G_1)$ Then, $\vert [x, y] \vert = \vert [x, x^{-k}y] \vert = 2^n$. Suppose that $v = x^{-k}y$, then the map α on G_1 defined by: $(x^s v^t z)^\alpha = (x v^{2^{n-1}})^s v^t z \forall z \in Z(G_1)$ and integers s, t, is a noninner automorphism of G_1 of order 2, which leaves $Z(G_1)$ elementwise fixed If $x^{2^n} = y^{2^n}k$ and $k \in \{2d\}_{d \in \mathbb{N}}$, a mapping $\alpha \in Aut(G_1)$. If we assume that $x^{2^n k} = y^{2^n}$ for some integer $k \in \{2d - 1\}_{d \in \mathbb{N}}$. Then, $|v| = |x^{-k}y| = 2^{n+1}$. Suppose that $[x, y] \in \langle x^{2^n} \rangle$ Then, $Z(G_1) = \langle x^{2^n} \rangle$. Thus, $|x^{2^n}| \ge 2^n$. Thus, $x^{2^{n_i}} = v^{2^n}$ for some integer *i* Now, $|x^{2^n}| \ge 2^n$, since $n \ge 2$, and $|v| = 2^{n+1}$, $i \in \{2d\}_{d \in \mathbb{N}}$. By implication, $|u| = |x^{-i}v| = 2^n$ and $u^{2^{n-1}} \notin Z(G_1)$ since $| [x, y] | = | [x, u] | = 2^n$. Hence, we have the map α on G defined by: $(x^s u^t a)^\alpha = (x u^{2^{n-1}})^s u^t a \forall a \in Z(G_1)$ as the automorphism α of G_1 required, s,t $\in \mathbb{Z}$. If we assume that $[x, y] \notin \langle x^{2^n} \rangle$, then $\Rightarrow Z(G_1) = \langle [x, y] \rangle = G'_1$ $_1',$ since $Z(G_1) = \langle x^{2^n}, [x, y] \rangle$ is cyclic. Also, consider: $G_1/Z(G_1) = \langle xZ(G_1) \rangle \langle yZ(G_1) \rangle$ and $|\langle xZ(G_1)\rangle| = |\langle yZ(G_1)\rangle| = 2^n$. This implies that $x^{-2^{n-1}k}y^{2^{n-1}} = \varepsilon \notin Z(G_1)$ and $|\varepsilon| = 2$ as $n \ge 2$. The map α on G_1 defined by $(x^s y^t a)^\alpha = (x \varepsilon)^s (y \varepsilon)^t z \forall z \in Z(G_1)$ is noninner for s,t $\in \mathbb{N}$.

Theorem 2: Suppose that G is a p -group of maximal class and of order p^n Suppose further that $Aut^{\Phi}(G)$ is the group of all automorphisms of G which centralizes the Frattini quotient. Then, $|Aut^{\Phi}(G)| \leq p^{2(n-2)}$ iff G is metabelian.

In order to prove this theorem, it is expedient to consider certain assertions. If G is a p -group of maximal class and of order p^n , let $\Phi = \Phi(G)$ be the Frattini subgroup of G. It has been proved by Satz (see [6]) that the order of $Aut^{\Phi}(G)$, the group of all automorphisms of G centralizing G/Φ , divides $p^{2(n-2)}$. Let the terms of the lower and upper central series of G be respectively denoted by $L_i(G)$ and $U_i(G)$. For $n \geq 4$, define the 2-step centralizer C_i in G to be the centralizer in G of $L_i(G)/L_{i+2}(G)$ for $2 \le i \le n-2$. Also, define $Q_i = Q_i(G)$ by: $Q_0 = G, Q_1 = C_2, Q_i = L_i(G)$ for $2 \le i \le n$. Let the degree of commutativity $\alpha = \alpha(G)$ of G be defined as the maximum integer \Rightarrow $[Q_i, Q_j] \leq Q_{i+j+\alpha} \forall i, j \geq 1$ if Q_1 is not abelian and $\alpha = n-3$ if Q_1 is abelian. Let $r \in G \setminus \bigcup_{i=2}^{n-2} C_i$, $r_1 \in Q_1 - Q_2$ and $r_i = [r_{i-1}, r]$ for $2 \leq i \leq n-1$. Notice that $\{r, r_1\}$ is a generating set for G and $Q_i(G) = \langle r_i, \cdots, r_{n-1} \rangle$, for $1 \le i \le n-1$

Theorem A: (see [3]) Let $G = \langle x, y \rangle$ be a 2-generated metabelian group. Then, the following statements are equivalent.

- (a) $\forall g_1, g_2 \in G'$, there is an automorphism of G, which maps x to xg_1 and y to yg_2 .
- (b) G is nilpotent.

Corollary: Suppose that G is a two-group of maximal class and order 2^n . Then, $\mid Aut^{\Phi}(G) =$ $2^{2(n-2)}$. By induction, if n ≤ 4, then G is metabelian and so, | $Aut^{\Phi}(G)$ |= $p^{2(n-2)}$, by theorem A. On the other hand, suppose that $n \geq 4$ and p is odd. Then, we have the following:

Lemma (i): If G is a p-group of maximal class and order p^n . Suppose that: $[Q_2(G), Q_2(G)] \le$ $Z(G)$, then $[r_i^{-1}, r] = r_{i+1}^{-1}[r_{i+1}, r_i]$ $(i \ge 2)$.

Lemma (ii): Let G be a *p*-group of maximal class and order p^n , $[Q_{t+1}, Q_{t+1}] = 1$ and $[r_t, r_{t+1}] =$ $w \in Z(G)$ for some $t \geq 2$. Then,

(a)
$$
[r_t, r_i] = 1
$$
 for $i \ge t + 2$,

- (b) $[r_{t+1}, r_{t-1}] = [r_{t-1}, r_{t+1}],$
- (c) $[[r_{t-1}, r_t], r] = [r, [t_t, r_{t-1}]],$

(d) If $[r_{t-1}, r_t] = r_d^{x_d}$ $\int_{d}^{x_d} r \frac{x_{d+1}}{d+1}$ $\frac{x_{d+1}}{d+1} \cdots r_{n-1}^{x_{n-1}}$ $\int_{n-1}^{x_{n-1}}$ for d \geq t+2 then, $[r_{t-1}, r_{t+1}] = r_{d+1}^{x_d}$ $\frac{x_d}{d+1} \cdots r_{n-1}^{x_{n-2}}$ $_{n-1}^{x_{n-2}}w^{-1}.$

Lemma (iii): Suppose that G is a p-group of maximal class and of order p^n and $[Q_2(G), Q_2(G)] \le$ Z(G). Suppose further that the map φ defined by $r^{\varphi} = r$ and r_1^{φ} $\frac{\varphi}{1} = r_1 r_2^{-1}$ 2^{-1} is an automorphism of G, then r_i^{φ} $\frac{\varphi}{i} = r_i r_{i+1}^{-1} [r_{i+1}, r_i]$, $i \ge 2$. By induction on G, consider the above corollary for general case of p, and by the metabelian condition, as in lemmas (i), (ii) $\&$ (iii), we have that if G is a p-group of maximal class of order pⁿ. Then, $|Aut^{\Phi}(G)| = p^{2(n-2)}$ iff G is metabelian, $n \in \mathbb{Z}^+$.

4 Proof of Results (i)

Proposition 1:(Passman(see[7]))If G is of class 2 with $b(G) = p^e$ and $e < p$ then $\bigcap \{ \ker \chi | \chi(1) =$ p^e } = 1.

Proposition 2: Let $N \triangleleft G$ with G/N a p-group, and $p \neq 2$. Let $C \in Irr(N)$ be invariant in G. Suppose that every irreducible constituent of C^G has degree $\leq p^{C(1)}$. Then, $b(G/N) \leq p$.

Proof: By extending C to $\hat{C} \in Irr(H)$ with $N \subseteq H$ and $|G : H| = p$, and for $\varphi \in Irr(H/N)$ with $\varphi(1) = p$, consider $(\varphi \hat{C})^G$. \exists linear $\mu \in Irr(H/N) \ni \varphi^x = \varphi\mu$ for $x \in G$, with μ independent of the choice of φ . And since $p \neq 2$, φ is invariant of G.

By proposition (1), let $C(1) = p$, then C^G is of degree = b(G) $\leq p^2$. Therefore, by the Passman's result, if p is odd, then $e < p$. The result thus follows. **Remark:** If $p = 2$, then the assertion is actually false.

5 Proof of Results (ii)

Theorem: Let $g \in G$ and let $0 \le n \in \mathbb{N}$. It is possible to find the number of nth roots of g in G. Let $C_n(g) = | \{ t \in G : t^n = g \} |$. If the $gcd(|G|, n) = 1$, an integer v may be chosen \exists nv \equiv $1 mod \mid G \mid$. Hence, if $t^n = u^n$, then $t = t^{nv} = u^{nv} = u$ (since $nv \equiv 1 mod \mid G \mid$). Thus, $C_n(g) \leq 1 \forall$

 $g \in G$. Since the map $t \rightarrow t^n$ is mono in G, it must also be onto. Thus, we have that $C_n(g) = 1 \forall g$ $\in G$. Now, by virtue of the fact that C_n is a class function on G, we write

$$
C_n = \sum_{\chi \in Irr(G)} V_n(\chi) \chi,
$$

where $V_n(\chi)$ a is uniquely determined complex number.

Lemma A:

$$
V_n = (\frac{1}{|G|}) \sum_{g \in G} \chi(g^n)
$$

Proof: By the orthogonality relations, we have that:

$$
V_n(\chi) = [C_n, \chi] = (\frac{1}{|G|}) \sum_{g \in G} C_n(g) \overline{\chi(g)}
$$

And since

$$
C_n(g)\overline{\chi(g)} = \sum_{t \in G: t^n = g} \overline{\chi}(t^n)
$$

we have

$$
V_n(\chi) = (\frac{1}{|G|}) \sum_{t \in G} \overline{\chi(t^n)}
$$

Replacing t by t^{-1} , we have that

$$
V_n = \left(\frac{1}{|G|}\right) \sum_{g \in G} \chi(g^n) \qquad \qquad \Box
$$

Lemma B: Let A \triangleleft G and $\chi \in Irr(G)$ with A $\subseteq ker\chi$. By definition of $V_n(\chi)$ in lemma A, let $\hat{V}_n(\chi)$ be the corresponding number computed in G/A. Then, $V_n(\chi) = \hat{V}_n(\chi)$.

Proof:

$$
\hat{V}_n = (\frac{1}{|G:A|}) \sum_{Ag \in G/A} \chi((Ag)^n) = (\frac{1}{|G:A|}) (\frac{1}{A}) \sum_{g \in G} \chi(Ag^n) = (\frac{1}{|G|}) \sum_{g \in G} \chi(g^n) = V_n(\chi). \Box
$$

Theorem C: (Alperin - Feit - Thompson) (see [7]) Suppose that G is a 2-group containing exactly k involutions. If $k \equiv 1 \mod 2^2$, then either G is cyclic or $|G : G'| = 2^2$.

Lemma D: Let $M \subseteq G$. Suppose that χ is a character of G. Then, $[\chi_M, \chi_M] \leq |G : M | [\chi, \chi]$ and $[\chi_M, \chi_M] = | G : M | [\chi, \chi]$ iff $\chi(g) = 0 \ \forall g \in G \backslash M$.

Proof: Consider:

 $|M| [\chi_M, \chi_M] = \sum_{m \in M} | \chi(m) |^2 \leq \sum_{g \in G} | \chi(g) |^2 = | G | [\chi, \chi],$ where $| \chi(g) |^2 \geq 0$, for g $\in G \setminus M$. Now, if $\chi(g) = 0 \ \forall \ g \in G \setminus M$. Then, $\sum_{g \in G} |\chi(g)|^2 = 0$. Also, since a perfect square is non-negative, this forces $\sum_{m \in M} |\chi(m)|^2 = 0 \Rightarrow [\chi_m, \chi_m] = |G : M | [\chi, \chi]$ iff $\chi(g) = 0$. **Lemma E:** Let $\chi \in Irr(G)$ and let c be a linear character of G with $c^n = 1_G$. Then, $V_n(\chi) =$ $V_n(c\chi)$.

Proof: Since $\chi \in Irr(G)$ and c is linear in G with $c^n = 1_G$, then $c\chi \in Irr(G)$. Thus,

$$
V_n(c\chi) = \left(\frac{1}{|G|}\right) \sum_{g \in G} (c\chi)(g^n) = \left(\frac{1}{|G|}\right) \sum_g c(g^n)\chi)(g^n) = \left(\frac{1}{|G|}\right) \sum_g \chi(g^n) = V_n(\chi)
$$

Note that: $c(g^n) = c(g)^n = c^n(g) = 1$.

Proof of Theorem C: Suppose that G is abelian, then, clearly, it must be cyclic. By induction on G. Suppose that G is not abelian. If $Z(G)$ is not cyclic, choose $H \subseteq Z(G)$, elementary abelian of order 4. Then, the set $\{y \in G \mid y^2 = 1\}$ is a union of cosets of H and hence $(k + 1)$ is a multiple of 4. $\Rightarrow \Leftarrow$. Hence, $Z(G)$ is cyclic and so, G contains the unique minimal subgroup N of order 2. Now since $G' > 1$, then $N \subseteq G'$. Also, G/N is not cyclic since G is nonabelian. If G/N satisfies the hypothesis of the theorem, then $|G : G'| = |(G/N) : (G/N)'| = 4$, by induction. Now, assuming that the number of involutions in G/N is not $\equiv 1 \mod 2^2$, we have that:

$$
\sum_{\chi \in Irr(G)} V_2(\chi)\chi(1) = k + 1 = 2mod2^2
$$

and

$$
\sum_{\chi \in Irr(G): N \subseteq ker\chi} V_2(\chi)\chi(1) not \equiv 2mod2^2
$$

and so,

$$
\sum_{\chi \in Irr(G): N \nsubseteq ker\chi} V_2(\chi)\chi(1) not \equiv 0 mod 2^2 \cdots (*)
$$

Suppose that $\mathfrak L$ is a group of linear characters c of G which satisfies $c^2 = 1_G$. Then, for $\chi \in Irr(G)$, we have that $c\chi \in Irr(G)$ and since $N \subseteq ker(c\chi)$.

Hence, \mathcal{L} permutes $\{\chi \in Irr(G) \mid N \subseteq ker\chi\}$ and partitions this set into orbits \mathfrak{S}_i . By lemma E, $V_2(\chi)$ is constant on each orbit as is $\chi(1)$. Now, $|\mathfrak{S}|$ is a power of 2. From $(*) \exists \chi \in Irr(G)$ \ni

- (i) $N \subseteq \text{ker}\chi$
- (ii) $V_2(\chi) \neq 0$,
- (iii) $\chi(1) | \mathfrak{S} | \leq 2$.

Taking $\mathfrak S$ as the orbit containing χ . Now, since N \nsubseteq $ker \chi$, we have that $ker \chi = 1$. G is not abelian, thus $\chi(1) > 1$ and thus, $\chi(1) = 2$, and $|\mathfrak{S}| = 1$. This implies that $c\chi = \chi$, $\forall c \in \mathfrak{L}$. Let T = $\Phi(G)$, the Frattini subgroup. Suppose that $g \in G \setminus T$. Then *exists* $c \in \mathcal{L}$ for which $c(g) \neq 1$ and we have that $\chi(g) = 0$. By lemma D, we have that $|G : T| = [\chi_T, \chi_T] \leq \chi(1)^2 = 2^2$. Observe that G is noncyclic; $|G, T| \ge 4$, and so, $4 = \chi(1)^2 = [\chi_0, \chi_0] = [G, T]$ Thus, we must have $\chi_T = 2\varphi$, where φ is a faithful linear character of T. Now since $V_2(\chi) \neq 0$, $\chi \in \mathbb{R}$. Hence, φ is also real. Thus, $|Q| \leq 2 \Rightarrow |G| \leq 2^3$ and so $G \cong D_{2^3}$ or Q_{2^3} . In either case, $|G, G'| = 2^2$.

Applying theorem C, we have that if \mathfrak{B} is the set of the elements of group $G \ni \mathfrak{B} = \{b : |b| = p\},\$ then $| \mathfrak{B} | \equiv 1 \mod p^a, a \in \mathbb{N}$.

Remark: Theorem (O. Tausssky)(see [6]). The only nonabelian 2-groups G for which $|G, G'|$ = $2²$ are the dihedral, semidihedral, and generalized quaternion groups, where the number of involutions is congruent to 1 modulo 4.

References

- [1] A. Abdollahi, Finite p -groups of class 2 have noninner automorphisms of order p , J. Algebra 312 (2007), 876-879.
- [2] J.E. Adney, T. Yen, Automorphisms of a p -groups, Illinois J. Math. 9 (1965), 137-143.
- [3] A. Caranti, C.M. Scoppola, Edomorphisms of two-generated metabelian groups that induce the identity modulo the derived subgroup. Arch. Math. 56 (1991), 218-227.
- [4] M. Deaconescu, G. Silberberg, Noninner automorphisms of order p of finite p -groups. J. Algebra 250 (2002), 283-287.
- [5] W. $Gaschütz$, Nichtabelsche p-Gruppen besitzen $aussere$ p-Automorphismen, J. Algebra. (1996), 1-2.
- [6] B. Huppert, Endliche gruppen vol.1. Spinger Verlag, Berlin, (1967).
- [7] I.M. Isaac, Character Theory of Finite Groups, Academic Press Inc. N.Y. (1976).
- [8] A. *Juhász*, The group of automorphisms of a class of finite p -groups, Trans. Amer. Math. Soc. 270 (1982), 469-481.
- [9] H. Liebeck, Outer automorphisms in nilpotent p -groups of class 2, J. London Math. Soc. 40 (1965), 268-275.
- [10] I. Malinowska, Finite p -groups with few p -automorphisims, J. Group Theory. 4 (2001), 395-400.
- [11] V.D. Mazurov, E.I. Khukhro (Eds), Unsolved Problems in Group Theory. The Kourouka Note book, vol. 16, Russian Academy of Sciences, Siberian Division, Institute of Mathematics, Novosibirsk, 2006.
- [12] P. Schmid, A Cohomological Property of regular p -groups, Math. Z. 175 (1980), 1-3.
- [13] S. Fouladi, On The Order of The Automorphism Group of A p -Group of Maximal Class, Tarbiat M. Univ., 20th seminar on Algebra, 2-3 Ordibehesht, 1388 (2009) 71-72.