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Abstract
Let H™ be a finite dimensional Hilbert space and 5, , be a generalized derivation
induced by the orthogonal projections P and Q. In this study, we have approximated
the norm of 8, by the formula Il 6, | = {3| @ |2}% + 3] ﬂlz}é and also showed
that p o is bounded and positive [|6p o II> 0 whenever P and Q are positive. Finally,

we show compactness of §, , for compact operators P and Q.
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Introduction

Studies have been done on generalized derivations, inner derivations, aspects of the underlying
algebra B(H) of these derivations and the structures of the operators inducing the derivations. An
operator T is called D-symmetric, if the closure of the derivation &, is equal to the closure of the
derivation &+ in the norm topology. Anderson, Deddens and Williams [1] showed that for a trace
class operator t, TP = PT impliesthat T*P = PT™ if T is D-symmetric operator. A generalization
of this concept was used in [13] to define a class of pairs of operators A, B € B(H) say, such that
BT = TA, implies that T*P = PT*, T*, P* being the adjoints of T and B respectively and T an
element of trace class operators i.e. P-symmetric operators. Salah [14] constructed different C*-
algebras using the elements of P-symmetric operatorsi.e. A, B € B(H) such that TA = AT implies
that A*T = TB*. Indeed by [13], for A,B € B(H), if the pair (A, B) is generalized P-symmetric
then: 10(A,B), (A,B) and «(A,B) are C*-algebras w*-closed in B(H) x B(H) and t(4,B) is a
bilateral ideal of (4, B). Continuity of derivations as mappings on different algebras is an
important concept which has been fairly researched on. Kaplansky [8] and later Sakai [15], proved
that a derivation & of a C*-algebra is automatically norm-continuous. This idea was later employed
by Kadison [6] to show that such derivation is also continuous in the ultra-weak topology only if

Page 1



Pure and Applicable Analysis 2022, 2022: 1 https://www.lynnp.org

such a derivation is of an algebra of operators acting on a Hilbert space. Johnson [5] and later
Sinclair [17] proved the automatic norm continuity of derivations of a semi-simple Banach algebra.
Ringrose [12] used cohomological notation to prove that derivations from a C*-algebra into a
Banach-Module are automatically norm continuous, and that for appropriate class of dual algebra
modules, they are continuous also relative to the ultraweak topology on the algebra and the weak
*-topology on the module [12]. A linear mapping on an algebra X into an X-bimodal M is called a
local derivation if for each T € A, there is a derivation 6 of X into M such that 6, = 67 (T) [7].
Most of the studies on local derivations have been focused on finding the conditions which imply
that a local derivation is a derivation. It is shown by Bresar [9] that in certain algebra, derivations
can be characterized by some properties which local derivations trivially have, for example; Let X
be a von Neumann algebra and let M be a normed X-bimodule. If a norm-continuous linear
mapping & of X into M is a local derivation, then § is a derivation.

A linear mapping T on a complex unital Banach algebra A is spectrally bounded if r(Tx) <
Mr(x) for all x € X and some M > 0 where r(.) denotes the spectral radius [4]. Bresar [9]
affirmed the fact that the image 8y of an inner derivation § of X is contained in the radical radX
of X if and only if § is spectrally bounded, where radX is the Jacobson radical. His argument was
essentially based on the results due to Ptak [11], that a spectrally bounded inner derivation has the
property that §2X < 6(X), the set of quasinilpotent elements of X. Curto [4] later on
characterized the generalized inner derivations on a unital Banach algebra which are spectrally
bounded. In particular,[4] simplified the argument due to [9], that every spectrally bounded inner
derivation that maps into the radical is attainable [4]. Suppose L(X,Y) is a space of all linear maps

between Banach spaces X and Y, and S is a subset of L(X,Y), a mapping A: X = T is said to be
weak-2-local S map if for every x,y € X and ¢ € Y, there exists Ty, o € S, depending on x,y

and ¢ satisfying ¢pA(x) = ¢T,, ¢ (x), and GA(y) = ¢Tyy 4 (¥). The idea of weak-2-local
derivations and automorphisms was introduced by Semrl [16] and explored extensively in [3] and
[2]. In [10], Niazi and others proved that every weak-2-local derivation on a finite dimensional
C* —algebra is a linear derivation , and every weak2-local *-derivation on B(H) is a linear *-
derivation. It was then proved that every (weak)-2-local derivation on C,(L,A) is a linear
derivation [3]. Consequently, [3] also showed that if B is an atomic von Neumann or a compact
C*-algebra, then every weak-2-local derivation on C,(L, B) is a linear derivation. Furthermore, for

a general von Neumann algebra M, every 2-local derivation on C,(L, M) is a linear derivation.
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We begin by applying the properties of orthogonal projections P and Q to construct a new
orthogonal projection P — Q. We then proceed to apply these properties to give examples of the
same on finite dimensional Hilbert space using matrices. We then construct a derivation 8p o (X) =
PX — XQ and show that 6p, is a bounded linear operator which is continuous and positive.
Finally, we calculate the norm || 85, Il of the derivation &, oand determine the norm and numerical
radii inequalities for the same. In each of the properties of Jp,q discussed, we infer the results to
the case when P = Q to obtain the result for inner derivation §,. We shall denote set of all
orthogonal projections acting on a Hilbert space H by P,(H).

Remark. The set of all derivations induced by orthogonal projections shall be denoted by
D,,[B(H)]. Similarly, we shall denote by D%, [B(H)] and DS, [B(H)] respectively the sets of all
inner derivations and generalized derivations induced by orthogonal projections. It is noted that if
P = Q then DS, [B(H)] < D;, [B(H)]. Let H be a Hilbert space with a decomposition H =
V@ Wt where Wt is the orthogonal compliment of W. Suppose that P,Q € Py(H) are
orthogonal projections on ¥V and W respectively, then for any arbitrary linear operator X, there
exists a new orthogonal projection 8po(X) = (PX —XQ) € Dop[B(H)] which acts on the

subspace V @ W+,

1. Basic definitions

Definition 2.1 (52, Section 1). Let B(H) be a C*-algebra of all bounded linear operators on a
Hilbert space H. An operator T, 5 : B(H) + B(H) is called an elementary operators if it has the
representation T(X) = Y=, A;XB;,VX € B(H) where A;, B; are fixed in B(H) or M(H), the
multiplier algebra of B(H). For A and B fixed in B(H), for all X € B(H) we define the particular
elementary operators:

(1). the left multiplication operator (implemented by A) L, : B(H) — B(H) is defined by

L.(X) = AX.

(i1). the right multiplication operator (implemented by B) R : B(H) — B(H) is defined by
Rz(X) = XB.

(iii). the generalized derivation (implemented by A4, B) 84 : B(H) +— B(H) is defined by

Sa5(X) = AX — XB,

(iv). the inner derivation (implemented by A) 84 : B(H) — B(H) is defined by

54(X) = AX — XA.

(V). the basic elementary operator (implemented by 4, B) M, g(X) = AXB
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(vi). the Jordan elementary operators (implemented by A, B)

Ua5(X) = AXB + BXA,VX € B(H).

Definition 2.2. Let M,,(KK) be a space of matrices over K. The norm of A € M, (K) is a function
defined by Il A | = max{ll Av |I: || ¥ || = 1} for a vector v which obeys all the norm properties
and in addition, it is submultiplicative and subadditivei.e | AB <Al Bllandll A+ B Il <l
Al +1I B |l for A,B € M, (K)

Example 2.3. The following are some examples of the matrix (operator) norms:

(i). One-norm(the £*-norm) I T Il;= Y7, | a;; |. Let M, (R) : R? — R? be given by

T = [é ﬂthus for unit vectors x; = [é] and x, = [2] then T(x,) = [;] and T'(xy) = [ﬂ
so Il T(xy) Il = ||[§] | = 111+131 = 4and 1 TCxp) 1= ||[ﬂ|| = 12|+ |1| = 3 therefore

IT = 4.

(ii). Max-norm (the £°-norm) | T 1= max | a;; |. Let T be as given in (i) above and vectors
X = [ﬂ and x, = [_11] then T(x;) = [i] and T(x;) =1 [_12] :

(iii). Two-norm (the £2-normon T) II T ll,= (X1 lay;1)z.

Definition 2.4 (1, Definition 2.1). Let T € B(H), +— B(H), be a bounded linear operator and
H,, H, finite dimensional Hilbert spaces. The norm of the operator T is the smallest real number

Il T Il suchthat || Tx I<II T Illl x |l where, x € H2,ie I T ll = sup{ll Tx ll: Il x Il = 1}.

Remark 2.5. Given that T € B(H) is a compact operator, then we denote by {s;(T)}, the singular
values of T i.e the eigenvalues of |T| = (TT*)%. Schatten-p norm is an operator norm defined by
T l,= (X5, sjp (T))% for 1 <p < . For strictly positive p, the class of operators which admits

1
the norms || T Il,= (X1 s}" (T))P are called Schatten-p operators and are denoted by C,. C, is

an ideal in B(H) of compact operators whose || T |I,,< oo, so that || |T|* ll,= Il T I3 for a finite p.

The C, class has two subclasses for p = 1 and p = 2 given by:
(i). Taxicab norm (C;): Forp=1then I T ll;= (32, s;(T)) and Il |T|* llu= I T IIf . The class of
2

all operators which admit the norm || T Il;= (X%, s;(T)) are called is called Trace class and is
denoted by C;

(i). Hilbert-Schmidt norm (C,): For p =2 then || T |l;= (Zj’;lsj(T))% and || |T|? ||%= I T 12
The class of all operators which admit the norm || T ll;= (X%, 5; (T))% are called is called Trace
class and is denoted by C,

Remark 2.6. The effect of an operator on a vector is a measure of how much an operator amplifies

anorm of a unit vector. Operator norm || T || is generally a vector norm on the range of the operator
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T such that || T? || < || T II>. An operator acting on a finite dimensional Hilbert space can be
represented by a matrix.

Definition 2.7. Suppose that U,V, T € B(H), where U and V are both unitary and A being
compact, then a norm [II. lll defined by [IUTV Il = [Tl is called unitarily invariant norm.
Definition 2.8. Let H be a complex Hilbert space and T be a linear operator from H to itself. T' is
said to be positive if (Tx,x) = 0,forall x € H. Thisisdenotedby T > 0or0 < T.T isthen
said to be strictly positive or positive definite if (Tx,x) > 0, forall x € H\{0}.

2. Results and discussions

We shall denote set of all orthogonal projections acting on a Hilbert space H by PO(H). In the
sequel, we shall consider two decompositions of H™ thus; H* = H, @ H, and

H™ = Hy; ®H,, sothat H* = H; @ H, = Hy;; ® H,,

Lemma 3.0.1. Suppose there exist two distinct ways of decomposing H", H* = H; @ H, and
H™ = H,;; @ H,, and if H; € H,, or H;; € H, ,then: H® = (H; @ Hy1) @ (H, N Hyy):
Proof.

Given that H; c H,,, then H; + (H,NH,,) = (H, +H,)NH,, = H" NnH,, = H,,: and
because H; N (H, N H,,) = (HyNH,)NH,, = {0}, we have H,, = H, @ (H, N H,,).
Therefore: Hn = Hy; @ H,, = Hy; @ H, ® (H, N H,,) = (H; @ Hyp) D (Hy N Hyy):
When H11 c H22, the same result follows by using H, = Hy; @© (H, N Hy,)

We now give some examples to illustrate the construction of matrices of orthogonal projections.
Example 3.0.2. Find the matrix for the orthogonal projection P : R3 — W given that W is

1 1
generated by the vectors v; = (1,1,1)and v, = (1,0,1). ToseethisletA=|1 0], AT =
1 1 ti
1 1 1 T, _[3 2 Tay-1 — >
[1 0 1]’ A'4 [2 2] and (4°A) l—l -

L Yr1 -1 11
Therefore, Q = A(ATA)'AT. Q =|1 oOf[_; 3 [1 0 1
bl
st O _
2 2 ]
= (0 1 o0]foranypoint (x,y,z) € R3.
1 1
st O _
L2 2
1 1
— 0 — X
2 2 xX+z xX+z
Q(x;y;z) = 0 1 O y = ( 2 ’y’ 2
1 0 1Lz
2 2
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Remark 3.0.3.

Suppose that H™ is an n-dimensional Hilbert space, then P(H™) and P,(H™) shall be used to denote
the set of all projections acting on H™ and the set of all orthogonal projections acting on H"
respectively. Naturally, Py(H) € P(H) c B(H). The B(H) used in this study is commutative. We
begin by discussion of the properties of P(H™) and Py(H™).

Theorem 3.0.4. Suppose that P, Q € Py(H) onto H; and Hi1 respectively, then the following are
equivalent:

(i). P — Q is an orthogonal projection onto H;; N Hj .

(il). PQ = QP =P.
(iii). H,, © H,.
Proof.

(i). = (ii). Suppose that P, Q € P,(H).
By the projection property, (Q —P)> = Q — P = 2P = PQ + QP.
Now,Q(2P = PQ + QP) = 20QP = QPQ + Q2P and
(2P = PQ + QP)Q = 2PQ = PQ2 + QPQ which meansthat PQ = QP = P.
(if). = (iii). Forany x € H", Px € H; > Px = QPx € H,, which means that H; c H,;.
Suppose T, = I, —P; (j = 1,2,..)then PQ = P whereT; = ,-P, T, = I, — Q and
T,T, = T, therefore T,x € H,, = T,x = T,T,x € H, sothat H,, c H,.
(iii). = (ii). Given that H,, < H,, then for every x € H,, Px € H; € H,; which implies that
Q(Px) = QP = P andsince H,, € H,, then T,x € Hy, € Hy forx € H" = T Tox = Tox =
TTT, = (U —P)Up— Q) =, -Q)= PQ =P
(if). = (i). For x €e (H;; N H,),then (Q — P)x = T,Qx = T;x = x.
But suppose that x = x; + x, where x; € H; and x, € H,, then
(Q—-P)x=(Q—P)x;+ (Q —P)x;

= QTyx1 + T;Qx, = O.
Therefore (Q — P) is an orthogonal projection onto H,, N H, along H, @ H,,. (H, = Hj and
H,, = Hi;). Now taking X € B(H), for a commutative B(H), X(P — Q) = XP — XQ = PX —
XQ which is the desired derivation. Suppose that p,, = {f;}¥_, and q,, = {gj};‘:l are bases for
H, and H, respectively with H* = H, @ H,and P : H" —» H,;,Q : H™ - H, then, {f;}*_, —
{9;}i=1 =y is abasis for Hy; N Hi which is the range for P —Q.
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Corollary 3.0.5.
Let P,Q € P,(H), thenhe operator PX — XQ gives the shortest distance between H;; N Hi- and
H™
Proof.
First we recall that PX — XQ projects every point in H™ orthogonally to H;; N Hi. Letx;,x, €
(Hyy N HE ) © H™, therefore for arbitrary y € H*, then |y —x; 1%, |y — x, 2 <
dist(y, Hy; N H{)? + €. Recall that (H;; N Hi ) and dist(H;; N H;, H) = infyren,ont |
y — x' |l. So, by application of parallelogram law,
Xy =2 1P= 20y =%, IPHNy =2, 1) =2 11 y —%(xl +x3) II?

< 2e.
Therefore, there exists t € H; NH{ t = (P — Q)xforsomex € H™ such that |y —¢t || =
dist(y, Hy; N Hi ). So, the approximant of H™ to H,; N Hi is the orthogonal projection P — Q.
Therefore, every y € H can be uniquely writtenasy = x + x’ where x' € (H;; N H{ ) and x €
(Hy1 N HY).
Lemma 3.0.6.
Given a compact operator X € B(H), then PX and XQ are also compact for P,Q € Py(H)
Proof. Suppose that X € B(H) is compactand Q € P,(H™) then P is bounded. Let x,, € H™ be a

bounded sequence. Then XQ is also bounded and contains a convergent subsequence. So XQ is
compact. Now since X is compact, therefore Xx,, contains a convergent subsequence Xx,, which

converges in the range of X. So PXx,, also converges.

Theorem 3. 0.7. Suppose that P, Q € P,(H™) and a compact X € B(H), then &p o (X) is compact.
Proof.

Let there exist bases p,, g, and b, in H" for P,Q and X respectively in H" so that (PX — XQ)
takes the form, y = p,b,, — b,q,. Let y be compact, U a closed unit ball of (H;; N H;* ) and z,
a sequence of y(U). It suffices to show that there exists a subsequence of x,, that converges to U.
By the supposition that y is compact, for everyn € N, z,, = yx,, and x,, belongs to the set U. So,
there exists a subsequence x,,, which converges weakly to x € U. We show that yx,, converges
to yx,, . Let y,, be a sequence of finite rank operator that converges to y. For any m’' € N, y,,,, isa

closed set which is bounded in a finite dimensional subspace (H;; N Hi- ) of H™, hence compact.
SO YmiXn,, k € N, converges to y,, (x). Given € > 0, there exists N € Nsuchthat |l y — yy I <
EE. Furthermore, given a fixed N, then k" € N, so that | yyx,, —ynx IS %for k = k'. So that

I ynxn, —vx 1<y —yN)xn, I+l yy(xn, —x) I +1l Gy = V)x |l
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<e+e+e
— 3 3 3

S0 z,, = yxy, CoOnverges to yx € y(U) so that y(U) is compact. Suppose that y(U) is compact,
then the union U, ey ) B(Zn, %) is an open covering of the compact set y(U), and therefore we
can obtain vectors x™, x ..., x™ € H" such that U, U(yx™, %) is a covering of y(U).

()

Suppose that H™ span yx;"*, i € N, T an arbitrary orthogonal projection on H™. Let also y,, =

T.y.
For € > 0,and N >§ ifn > Nwith || x I< 1, then | yx — yx | = Il yx — Tyx |l.

Now because Ty € y,, is the point in H" closest to yx, therefore

lyx =y X IS infigian Nyx—yx™ Il <7 < e

So, ¥, = v as n +— oo. Which implies that DS, [B(H)] is a compact ideal of B(H)". Now since
Yn = ¥ € DS, [B(H)] the assertion is proved.

Example 3.0.8. Let H" = £* and m x m operators P = [a;;] and Q = [b;;] such that

_pn:i:j ___Qn:i:j
ay = {g i # and by = | i #

forn=m-1, q,(qg,—1) =0and m>2.
Let the operators P and Q be bounded i.e. forn > 1, p, = (p1, P2, ...) € £ andq, = (q4,
qz, -..) € €. Let P be majorized by Q or Q majorized by P so that (p,, — q,,) is also diagonal

and (pn — qn) = ((P1— q1), (P2 — q2),-..) € £* Suppose that lim,, . (pn — gn) = 0and
(P — Q)n = diag((ps — 41), (p2 — 42),0,0,...), then (P — @), is compact and Il (P — Q) —
(P —Q)n I = sup{|pn — qn| = n + 1} — 0. For an arbitrary X € B(¢#)?, then PX — XQ is
also compact. Suppose that x,, € #2 , with the following conditions, Il x, I< 1, Il (PX —
XQ)x =1 PX — XQ |l and some a, 8 € F, such that
LMoo (P = Gn)¥n, Xn) = My oo (Pn — Gn)*Xn, Xn)
= limpy,oo{(Pn = @) "X, Xn)
= |la—Bl.
Thus |a — B| € R*.
Example 3.0.9. Let H™ = L2(T) be the space of 2r—periodic functions and a constant function

u= é with || u || = 1, then the orthogonal projections Pu and Qu are defined by Puf =
— [T f@dx and Quf = [ g(x)dx. S0 P — Q =— [ (f(x) — g(x))dx and so for X €
B(L2(T)), then PX — XQ = - S () (f(x) — g(x))dx is compact.

We apply the following example in showing how a matrix of &, , can be constructed.
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Example 3.1.0. Consider two sets of vector v; = (0, 1, 0), v, = (0, 1, 1)
andu, = (1, 1, 1), u, = (1,0,1). By simple calculation, we get that

0 0
_ r_J0 1 0 r._[1 1 ~—1 _[2 -1
A_(l) 1"4 o1 1]’ AA_[1 2]’ (447 _[—1 1]
0 0 O
so A(ATA)™1AT = [0 1 0] thus we get an orthogonal projection
0 0 1
0 0O
P =10 1 0].Similarly for the second set of vectors, we get another orthogonal projection
0 0 1
1 1
2 2
XQ =10 1 0].Now foran arbitrary operator with a matrix representation
1 o0 1
2 2
1 1
100 00 0 > 0 3
X=10 1 1|thenPX =0 1 1|andXQ = |1 1|so that
0 0 O 0 0 O 2 2
. ) 0 0
— 0 —
2 2
PX —XQ = |2 4 1
2 2
0 0 O

Example 3.1.1. Let H™ be a complex four-dimensional Hilbert space and B(H) algebra of 4 x 4
matrices. We take P, (H) to be the subalgebra of diagonal matrices, so §p, : Po(H) — B(H).
Suppose that P, Q € P,(H)are selfadjoint orthogonal projections onto H, and H;; spanned by
the orthogonal unit vectors

== (1, =1 + V3, 7= (4—5V3), 7= (-2 + iV3))

%, =57 (1, =1 = iV3, 7= (-2-iV3), 7=(4 + 5V3))
And the unit vector

x5 =551 2 V3, V)
respectively.
Then for an arbitrary operator X € B(H) with || X || = 1, operator PX — XQ has a Hermitian
matrix
Given by
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1 _ 1 L
_14 —44 W(_S + 6iV3) W(_S — 6iV3)
1l —2V14 —2V14
il _ 1
12 m(—5—6l\/3) —2\/14 ; E(_QS + 121'\/3)
1 _ 1 _ ]
_ﬁ(—s +6iV3) —2v14 7795 - 12iV3) ?

which is also idempotent. We now consider the linearity of &, in the following proposition.
Proposition 3.1.2. A derivation PX — XQ is linear for an arbitrary X € B(H).
Proof.
Let {fi}ie; and {q;};; be two orthonormal bases for H;; N Hi- and (H,; N Hi")*, respectively,
and T = I — (P — Q) be the orthogonal projection on (H;; N H{)*. Suppose X € B(H) then
forx,, x, € Hand a, B € K, then by theorem 4.12, there exist y = (p,b, — b,q,) such that
y(axy + Bxz) = ¥ Xier Znfaxy + Bxa, f)

= Yier Xn{(Pnbn — bn@n) (ax1 + Bx2), fi)

= Yier 2n{@Pnbnxy + Brnbpx; — abuqnxy — Bbnqnxs, f7)

= aYier Zn{Pnbnx1, fi) + B Lier ZnlPnbnX2, [;) — @ Xier 2nfbnqnXy,
fi) = B Xier ZnbndnX2, f;)

= a Yier Ln{(Pnbn — bndn) X1, fi)* B Lier Ln{(Pnbn — bndn)x2, fi)

= ayx; + Byx;
Corollary 3.1.3. A derivation PX — XQ is linear on (i) H™ and (ii) B(H").
Proof.

(i). Linearity in H™: Giventhat P,Q € P,(H), by [76, lemma 2] we can obtain a pair x,y €
Hand a,f € Kandonsetting lim || Px, =1 P Il, limll Qx, =1 Q Il and
n n

lim (Qx,, x,) = |u|, lim (Px,, x,) — |A| and also setting Ox = ox + By, Px = a* X + [y with
n n

(x,yy)=0andllx =1y ll= 1.Setalsothat Xx = x, Xy = —y and also that X acts on {x, y}
then, P — Q is an orthogonal projection onto H,; N Hi-. On respective post and premultiplication
of P and Q of P — Q by X gives a new operator of the form y such that for x € H,
yx = Px —a* Xx + [* Xy

=ax + fy—a’x + [y

= (a—a")x + (f + By, forax, fy € H"
and on the other hand

8po(X)(ax + By) = y(ax + By)
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= yax + yBy
= adpo(X)x + Bbpo(X)y
(i1). Linearity in B(H™): By similar calculation, we can find a pair of operators X,Y € B(H)
anda,f €K
SpolaX + BY )x ={P(aX + BY) —(aX + BY )Q}x
={aPX + BPY —aXQ —BYQ}x
= aPX —aXQ + BPY — BYQx
={adpo(X)x + BSpo(Y)}x.
So, 6poX is linear on both H™ and B(H).
Proposition 3.1.4. Suppose that P, Q € PO(H) and an arbitrary X € B(H), then §%5 ,(X) =
PX + XQ — 2PXQ.
Proof.
52P,Q(X) = 6P,Q(PX — XQ)
= P(PX —XQ) - (PX —XQ)Q
= PPX-PXQ — PXQ + XQOQ
= PPX + XQQ — 2PXQ
= PX + XQ —2PXQ
Theorem 3.1.5. Suppose that P, Q € Py(H), then the derivation §p o (X) = PX —XQ is
bounded from below.
Proof.
By the definition of §p o We observe that §p o(X) = p, — g, is meaningful for the basesp,, and
q, of P and Q respectively with ¥, Il f;, II* = 1. Since p, and g, are bounded, from the
definition of 8§,  (X), we have,
Il 8p.o(F) I =1l o Pnfn = ) I 2
> Y0l pnfa 12 =20 Il fupn I?
={Znlpal? = Zn gl I fu 12,

Since the difference of finite summation of p,, and g, is also bounded, by taking supremum of
both sides of the above inequality gives | § 1= {X,|p,]2} 72 — {anqn|2}§_

Proposition 3.1.6. Suppose that P, Q € P,(H), then the derivation 6p ¢ is bounded from above.
Proof. Let P, Q and X be induced by p,,, g,, respectively and f,, as arbitrary elements of B(H).
By the definition of §, we have for {Il ¥, f, I’} = 1 and | X, f,, II< 1 that

I 8p,0 17= 1| Zn(Pnfn = fudn) 117
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S Znpufo 1240 B fudn 112

< Zalpal? + Znlanl? X Zn fo 17}

= Zalpal? +Znlaal?3

= {Znlpal +Xnldnl }- )
Taking the supremum of both sides of the inequality gives us Il 6p o (X) IS (X, |Pnl}z +
Snlanll.
Proposition 3.1.7. Suppose that P, Q € P,(H), then p o (X) has a bounded inverse on Hy; N
Hi- if and only if 65 o (X) is bounded from below.
Proof. From
the definition of 8p ¢, we have that 8p o (X) is a transformation &p o (X): H* — Hy; N Hi- . Now
suppose that p,,, g, and x,, as described in theorem 4.12 are all bounded from, then so is y, and
therefore there exists a real number m > 0 such that || y(x) = m || x | V x € H™. This means
that y is a one-to-one map. Thus y is a bijection and hence has an inverse, y =1 : B(H) —» Py(H)"
which is linear and onto. We then show that y =1 is bounded and|| y 1 |I< %
Let y € H;; N Hf and P',Q" € Py(H)™ theny € y(x), for unique elements x € H* and P, Q €

Py(H)™. Now, since y is bounded from below, we getm™ | y I=Il y "ty lliell y ly IS m™ 1|
y Il and since P, Q are arbitrary in P,(H)™ and  is arbitrary in H;; N H{- ,we get || y "1y II< % [

y I Vy €Hyy nH{ . Thusy~ is bounded. Alsoll y % II< —

Conversely, suppose that y has a bounded inverse on Py(H)™ . Since H™ = 0, we have [ly ~1||= 0
and therefore || y~1 | > 0. Since y : Py(H)™ - B(H)" is bijective, each y € H;; N Hi is y(x)
for a unique x € H™. Sothe relation [y X I<Iy~ Il y | Yy € Hy; N Hi can be written as
Iy Yy =1yl x|l Vy€ Hyy nHE.

Which shows that 6  (X) is bounded from below.

Corollary 3.1.8. Given P, Q € Py(H) then &,  is continuous.

Proof.

First we assume that P L Q. For an arbitrary x € H™, || x I = 1,thenx = Px + Qx and || x [I>=
Il Px 124+ 1| Qx 112> || Px |12 and |l x 2= Il Px II2+1l Qx I>=1l Qx |I2. Thus both Px and Qx are
bounded by 1 and so is PX and QX. Suppose that 6p is continuous at 0, then we can get some

A > Osuchthatforally € Hwith |l y < Athen|yy Il < 1. Now for x € H and x # 0 then

A (2");") = % , SOl y()lﬁ) | < 1. By the linearity of PX —XQ and homogeneity of the norm,

we get
12 YA =A== === fyx |

llx|l 2|lxl 2|lxll
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and therefore | (PX — XQ)x i< M Il x I with M ==
In the following discussion, we consider the positivity of the operator 6p o on H™.
Lemma 3.1.9. The product of two commuting positive operators P € P,(H™) and X € B(H) on
H™ is also positive on H™.
Proof.
Let P # 0 and define a sequence of operators {S;>, }by S; =P P, S,+1 =S, —S2 =
S,(I —S,) for polynomials S,, in P and hence selfadjoint operators that commute with P for all
n € N.SothatP =PI X2, Y S2. Foreveryx € H", ¥, 3 || S,x II?°< oo sothat || S,x |l
= 0. Now, (PXx,x) =1l P Il Yoy (XSpx,Spx) = 0.
Lemma 3.2.0. Let H™ be a finite dimensional Hilbert space and P, Q € Py,(H™) such that
ranP < ranQ and X € B(H) a positive operator on H" that commutes with both P and Q.
Thenll PX — XQ II*> =l PX I*—Il XQ I and || PX II* <Il XQ II
Proof.
We invoke vector majorization thus: Given that P,Q € P,(H) then P — Q is an orthogonal
projection onto Hy; N Hi along (Hy; N Hi )* and ranP, ranQ € H;; N H{ . Let p € ranP,
p = {p;i}i2, and q € ranQ, q = {q;}}-, . For suitable bases, we can obtain the matrices for P, Q
and X € B(H) such that the Hilbert- Schmidt norm applies as follows; || Pl,=
(B Xj=1 1 pij 12 32 1Q = CZ1 X1 14 I? ) and IX Nl = (21 Xj=1 | x5 17 2. Then
Yk qli] < X¥pli] and for an arbitrary 3% x[i].
I PX-XQ Il = (XiZ1 Xj=1 | ijxij - xuqul )2

> (X1 Xj=1 | pijxij | )2 (221 X1 | qijxij 12 )2

= (X 121 1|Puxu |2 )2 —(XE 121 1 le,q” |2 )2

=1 PX ll,—I XQ ll,< 0
Theorem 3.2.1. Let P,Q € Py(H)suchthat P > @ and an arbitrary positive operator X € B(H).
Then 6p o (X) = PX — XQ is positive.
Proof.
It suffices to show that §p o (X) has square roots. If P = Q then §p o (X) = 0 then 8p o (X) = 0,
non-negative. Suppose that P —Q = 0 then 0 < (P—-Q) <[ = 0 < (PX—XQ) < for an
arbitrary positive operator X € B(H).
Now || (PX —XQ) Il —(PX — XQ) must then satisfy the condition that 0 <|| (PX — XQ) |l
—(PX — XQ) < I and so we can find an operator A suchthat A2 = || (PX — XQ) I~ (PX — XQ)
then S = (VI (PX —XQ) I)A satisfies S? = (PX —XQ). Wethenset Z =1— (PX — XQ)
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and V = I — S. The operator V should have the property (I —V )% = I — Z, that is implicitly
expressed as

V= o(Z 4 V) oo e (4.2.1)
Now 0 <Z < I,and V chosenissuchthat0 <V < I.

Conversely, if 0 < V < [ and satisfy equation (4.2.1) above, then S = I — V is a positive square
root of T. We apply method of successive approximations to solve (4.2.1). We set V, = I and

define V,, recursively by

Varr =5Z+VE), m= 0,1, 2, oo 4.2.2).
We show that 1}, converges strongly to a solution of equation (4.2.1).

LEt 0 S U S Lo (4.2.3)
This is obviously true for a positive integer n.

(Vi X, 2) = (Zx, %) + 2l Vo 2 VX € H™, i (4.2.4)

which implies that V,,,.;, = 0

Now V, < 1. Suppose that I, < I, then equation (4.2.4) gives

(Vos1 %,20) S 2{Ix,20) + 5 I 2 17 = (Ix,x) (since Z < I)and Vy < 1. Thus Vyyq < 1.
Consequently, [ V,, I< 1 V n € N. Now we showthatV,, <V,,,Vn €N, V\{0}ieV,, —

I, = 0. Next, we observe that V,, is a polynomial in Z with non-negative coefficients. Now this is

true forn = 0 (for V; =V, = %(Z — I). We observe that

1 1
Vaer =Va =3(Z + VE) = 2(Z = V1) oo (4.2.5)

2
(It is noted that V,,_; and V,, are both polynomials in Z and so V},, & V,,_,). Suppose that V,, —
Vn.—1 is apolynomial in Z with non-negative coefficients, then equation (4.2.5) shows that
Voe1 — Vy is also a polynomial in Z with non-negative coefficients for each non-negative n.
Next, we show that
> 0 (4.2.6)
For k=0,1,2,...1fk = 2j,then (Z*x,x) = || Z/x I? > 0, V x € H™. Using equation (4.2.6)
and the fact that each V,,,; — V, isa polynomial in Z with non-negative coefficients, we see that
Vn+1 — Vi = 0 for all the non-negative integer n. The sequence (1},) satisfies,

0 SV S Vg1 S oN=0,, 2, o (4.2.7)
and so there is a self-adjoint operator V € B(H) such that
Uy @ V, Uy S VS L NZ0, L, 2 e e (4.2.8)

By equation (4.2.8), we see that the operator V is a solution of equation (4.2.4). Lettingn — oo
we have from equation (4.2.2)
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V=25 —limV,,
=S—lim=(Z + V)

1
=§(Z + )

thenS = I —V isasquare root of (PX — XQ).

3. Conclusion

We have shown that PX — XQ is bounded, continuous everywhere and positive i.e. || PX — XQ |l
> 0 for positive operators P,Q and an arbitrary operator X. For objective two, we have
approximated the norm of &p o by the formula Il 654 |l = {3] @ |2}% -3 B |2}§ and that this

norm is bounded.
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