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Abstract

In this paper we are interested in the existence of solutions for Navier problem associated

with the degenerate nonlinear elliptic equations

A[w1 |Au|P2Au + w2|Au|q_2Au]
—div [ﬂ (x,u, Vu) wz + B(x,u, Vu) a)4]
n
+H (x,u, V) ws = fo(x) = > "D, f;(x) in Q,

j=1
u(x) = Au(x) =0 on 0Q,

in the setting of the weighted Sobolev spaces.

Keywords: degenerate nonlinear elliptic equations, weighted Sobolev spaces, Navier problem.

1 Introduction

In this paper we prove the existence of (weak) solutions in the weighted Sobolev space X =

Wé T(Q, w3) N Wg (Q, w1) (see Definition 2.2 and Definition 2.3) for the Navier problem

Lu(x) = fo(x) = ) D;fj(x) in €,
P) 0 ; i

u(x) =Au(x) =0 on 0Q,
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where L is the partial differential operator

Lu(x) = A [w1 |AulP2Au + wzlAulq_zAu] — div [ﬂ(x, u, Vu) wz + B(x,u, Vu) a)4]

+ H(x,u,Vu) ws, (1.1)

where D; = 0/0x;, Q is a bounded open set in R", wy, wy, w3, ws and ws are five weight
functions (which represent the degeneration or singularity in the equation (1.1)),2< g < p < oo,
2<s,z < r < oo and the functions A; : QXRXR"—>R, B; : QXRXR"—R (j = 1,...,n) and
H : QxRXR"— R satisfying the following conditions:
(H1) x—>Aj(x,n, ) is measurable on Q for all (77, §) € RxR",

(n,€)—A;(x,n,€) is continuous on RXR” for almost all xe€;

(H2) There exists a constant §; > 0 such that

<ﬂ(x’ n, é:) - ﬂ(x’ 77,’ f,), (‘f _g,)> > 91 |§ _‘f,lr,

whenever &, &'eR", é£&, and A(x,n, &) = (A1 (x,1,€), ..., Ay (x,n,&)) (Where (., .) denotes here
the Euclidian scalar product in R");
(H3) (A(x,n,&),&) > A1|€]", where A, is a positive constant;
H4) |[A(x,n,&)|<Ki(x) + h (x)|n|r/’, + hz(x)lflr/r,, where K, h; and h, are nonnegative
functions, with A1, hoeL®(Q) and K1€L” (Q, w3) (with 1/r +1/r" = 1);
(HS) x—8B;(x,n,£) is measurable on Q for all (7, £) € RXR",

(1, €)—B;(x,n,£) is continuous on RXR" for almost all x€Q;

(H6) There exists a constant 8, > 0 such that

<B(X, n, 6) - B(x’ 77/’ f,)’ (‘f - 6,)> > 92 |€: - f,ls’

whenever &, &’eR", £+&', where B(x,1,&) = (B1(x,n,8), ..., B, (x,1,£));
(H7) (B(x,n,£), &) > 1€° + Az|n|®, where A, > 0 and A, > 0 are constants;
(H8) |B(x,n,&)| < Ka(x) + g1(x)|n*"*" + g2(x)|€]**", where K», g1 and g are nonnegative func-
tions, with g; and g,€L®(Q), and Kr€L* (Q, w4) (with 1/g +1/q’ = 1).
(H9) x+— H (x,n, ) is measurable on Q for all (77, &) € RxR”
(n, &) H(x,n, &) is continuous on RxR" for almost all xeQ.
H10) [H(x,n,&) = H(x,n',E)](n—1n") >0, whenever n, 7’€R, n#n’.
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(H11) H(x,n,&)n = A3|€]° + As|n|*, A3 and A3 are nonnegative constants.
(H12) |H (x,n,&)| < K3(x) + h3(x)|n|7’%" + ha(x)|€)*", where K3, h3 and hs are nonnegative
functions, with K3€L? (Q, ws) (with 1/z+ 1/z’ = 1), h3 and ha€L®(Q).

Let Q be an open set in R”. By the symbol W (L) we denote the set of all measurable a.e. in Q
positive and finite functions w = w(x), x € Q. Elements of ‘W (Q) will be called weight functions.
Every weight w gives rise to a measure on the measurable subsets of R” through integration. This
measure will be denoted by u,,. Thus, y,(E) = / w(x) dx for measurable sets E C R”.

In general, the Sobolev spaces WX? (Q) without wcfights occur as spaces of solutions for elliptic and
parabolic partial differential equations. For degenerate partial differential equations, i.e., equations
with various types of singularities in the coefficients, it is natural to look for solutions in weighted
Sobolev spaces (see [2], [3], [4] and [7]). In various applications, we can meet boundary value
problems for elliptic equations whose ellipticity is disturbed in the sense that some degeneration
or singularity appears. There are several very concrete problems from practice which lead to
such differential equations, e.g. from glaciology, non-Newtonian fluid mechanics, flows through
porous media, differential geometry, celestial mechanics, climatology, petroleum extraction and
reaction-diffusion problems (see some examples of applications of degenerate elliptic equations in
[1] and [6]).

A class of weights, which is particularly well understood, is the class of A ,-weights (or Muckenhoupt
class) that was introduced by B. Muckenhoupt (see [15]). These classes have found many useful
applications in harmonic analysis (see [17]). Another reason for studying A,-weights is the fact
that powers of distance to submanifolds of R" often belong to A, (see [13]). There are, in fact,
many interesting examples of weights (see [12] for p-admissible weights).

The following theorem will be proved in section 3.

Theorem 1.1. Let2<g < p <oo,1 < 5,7 <r < oo and assume (HI)-(HI2). If

(i) w1 € Ay, wy € W(Q), and Z—? e L/ =(Q, w));

(i) w3 € A,, w4 € A, and Z—;‘ e L' =9(Q, w3);

(iii) ws € W(Q) and % e L'/0=9(Q, ws).

(iv) fi]ws eL"(Q,w3)3(j =0,1,...,n).

Then the problem (P) has a unique solution u€ X = Wé’r(Q, w3) N Wg’p (Q,w1). Moreover, if
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2 < r < oo we have

1, 1 (m\ !
<y, |—mP 1y ==
Julx yp,r(p, r,(ﬁl) )

n

where yp, = pr[/(pr—p—r), M = Callfo/wsllLr" (@.uwy * Z ||fj/w3||L,,(Q’w3) and Cgq is the
j=1
constant in Theorem 2.2.

2 Definitions and Basic Results

Let w be a locally integrable nonnegative function in R” and assume that 0 < w < oo almost
everywhere. We say that w belongs to the Muckenhoupt class A,, 1 < p < oo, or that w is an

Ap-weight, if there is a constant C = C, ,, such that

! 1 e\
ﬁ w dx E w P) dx <C,
B B

for all balls B C R”, where |.| denotes the n-dimensional Lebesgue measure in R”. If 1 < g < p,
then A, C A, (see [10], [12] or [17] for more information about A ,-weights). The weight w satisfies

the doubling condition if there exists a positive constant C such that
p(B(x;2r)) < Cu(B(x;r)),

for every ball B = B(x;r) CR", where u(B) = fBa)(x) dx. If weA,, then u is doubling (see
Corollary 15.7 in [12]).

As an example of A,-weight, the function w(x) = [x|?, xeR", is in A, if and only if -n < a <
n(p — 1) (see Corollary 4.4, Chapter IX in [17]).

If weA,, then
p
(@) < cHE)
|B| u(B)

whenever B is a ball in R” and E is a measurable subset of B (see 15.5 strong doubling property
in [12]). Therefore, if u(E) = 0 then |E| = 0. The measure u and the Lebesgue measure |.| are
mutually absolutely continuous, i.e., they have the same zero sets (u(E) = 0 if and only if |E| = 0);
so there is no need to specify the measure when using the ubiquitous expression almost everywhere

and almost every, both abbreviated a.e..
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Definition 2.1. Let w be a weight, and let Q C R” be open. For 1 < p < co we define L?(Q, w) as

the set of measurable functions f on  such that

1/p
||f||Lp(Q,w):( / Ifl”wdx) <o

If weA,, 1 < p < oo, then w 1P-D g locally integrable and we have
LP(Q,w)c Ll _(Q) for every open set Q (see Remark 1.2.4 in [18]). It thus makes sense to

loc

talk about weak derivatives of functions in L” (Q, w).

Definition 2.2. Let Q CcR" be a bounded open set, | < p < oo, k be a nonnegative integer
and w € A,. We shall denote by WEP(Q, w), the weighted Sobolev spaces, the set of all func-
tions u € L”(Q, w) with weak derivatives D%u € L? (Q, w), 1 <|a| < k. The norm in the space

WhP(Q, w) is defined by

1/p
lellwer (@) = (/ lu|? w dx + Z /lD“ul”wdx) ) 2.1
Q Q

1<|al<k
If we Ay, then WKP(Q, w) is the closure of C*(€2) with respect to the norm (2.1) (see Corollary
2.1.6 in [18]). We also define the space W(I; ’(Q, w) as the closure of Cy’ (L) with respect to the
norm (2.1). We have that the spaces W*?(Q, w) and W(I; 7 (Q, w) are Banach spaces.
The space Wé’p (€, w) is the closure of C;°(L2) with respect to the norm (2.1). Equipped with
this norm, Wé P(Q, w) is a reflexive Banach space (see [14] for more information about the spaces

WP (Q, w)). The dual of space W(;’p (Q, w) is the space

L

(WP ()" = {T = fo—div(F), F = (fi, ., fu) : ZeLP’(Q,w),j =0,1,..,n}

It is evident that a weight function w which satisfies 0 < ¢; < w(x) < ¢, for x € Q (where ¢ and c;
are constants), give nothing new (the space Wol’p (Q, w) is then identical with the classical Sobolev
space W(l)’p (Q)). Consequently, we shall be interested above all in such weight functions w which
either vanish somewhere in Q or increase to infinity (or both).

In this paper we use the following results.

Theorem 2.1. Let we A), 1 < p < oo, and let Q be a bounded open set in R". If u,— u in

LP(Q, w) then there exist a subsequence {u, } and a function ® € L? (Q, w) such that
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(i) tm, (x)—= u(x), my — oo a.e. on Q;

(ii) |um, (x)| < P(x) a.e. on Q.
Proof. The proof of this theorem follows the lines of Theorem 2.8.1 in [9]. |

Theorem 2.2. (The weighted Sobolev inequality) Let Q be an open bounded set in R" and w€A,
(1 < p < o). There exist constants Cq and 6 positive such that for all u € Wé’p (Q, w) and all k

satisfying 1 <k <n/(n—-1) +9,
lull Lir (@) < Call IVul ll Lr (@.w)» (2.2)
where Cq depends only on n, p, the A,-constant C(p, w) of w and the diameter of Q.

Proof. Its suffices to prove the inequality for functions u € C°(€2) (see Theorem 1.3 in [8]). To
extend the estimates (2.2) to arbitrary u EW(;’p (Q, w), we let {u,,} be a sequence of C;(Q)
functions tending to u in Wé P (Q, w). Applying the estimates (2.2) to differences u,,, — uy,, we
see that {u,,} will be a Cauchy sequence in L*”(Q, w). Consequently the limit function u will lie

in the desired spaces and satisfy (2.2). O

Lemma 2.3. Let 1 < p < oco.

(a) There exists a constant a, > 0 such that

P 2x = 1y 1P 72y| < @p b = yl(x] + )72, Va, y € R

(b) There exist two positive constants [3,, v, such that for every x,y € R"

By (Il + [yDP e = 317 < (P = [y 2y, = y) < p (Il + )P 2 = 1P,
where (., .) denotes the Euclidian scalar product in R".
Proof. See [5], Proposition 17.2 and Proposition 17.3. O

Definition 2.3. We denote by X = Wé’r(Q, w3) N Wg (Q, wy) with the norm

lullx = lAullLr @) + VUl @0
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Definition 2.4. We say that an element u € X = Wé’r(Q, w3) N Wg P (Q, w) is a (weak) solution of

problem (P) if

/lAu|p_2AuAgow1dx+/|Au|q_2AuA<pw2dx
Q Q

+/(ﬂ(x,u,Vu),V(p>w3 dx+/(B(x,u,Vu),Vgo)w4dx+/W(x,u,Vu)gaag dx
Q Q Q

:/f0¢dx+2/ijjg0dx,
Q ole

forall p € X.

Remark 2.4. (a) If @2 e LPI(P=9(Q, w;) (2< g < p < o) then there exits a constant M; > 0 such
w1

that
Nl La(@.00) < M1 lull Lr (@)

where M| = ||wy/w ||l/ . In fact, by Holder’s inequality,

q

LP/(P=9) (Q,w)
q q _ qwz

u = ul? wy dx = ul* — wy dx

g = [ 7 w2ds= [ i e

q/p W) r/(p—q) (r-q)/p
(/|u|q”/qw1 dx) (/ (w—l) w1 dx)
Q Q

1ull] s @y lw2/ 1 Lr0-0 (@01)-

IA

(b) Analogously, if < € L7/0=)(Q, w3) and 22 € L7/0-9(Q, w3) (with 1 < 5,2 < r < o),
w3 w3

there exist constants M, > 0 and M3 > 0O (respectively), M, = ||a)4/w3||1L/rj(H)(Q o) and M3 =
1/

lws/ws3 ”Lri(r—z)(g,ag) such that
Nl s (g < M2 lull L (@)

el L2 (@.0s) < M3 16l Lr (.05 -

3 Proof of Theorem 1.1

The basic idea is to reduce the problem (P) to an operator equation Au = T and apply the theorem

below.
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Theorem 3.1. Let A : X—X* be a monotone, coercive and hemicontinuous operator on the real,
separable, reflexive Banach space X. Then the following assertions hold:
(a) For each T € X* the equation Au =T has a solution ueX;

(b) If the operator A is strictly monotone, then equation A u =T is uniquely solvable in X.
Proof. See Theorem 26.A in [20]. ]

To prove Theorem 1.1, we define B, B1,B3,B3,B4,Bs : XXX —>Rand T : X - R by

B(u,9) = Bi(u,¢) +Ba(u, ) + B3(u, ¢) + Ba(u, ¢) + Bs(u, ¢),

Bi(u,p) = /lAulp_zAuAgowldx,
Q

By(u,@) = /|Au|q_2AuA<pw2dx,
Q

Baing) = [ (Al V). V) wn
Q

By(u,¢) = /(B(x,u,Vu),Vgo)wa,a’x,
Q

Bs(u,¢) = /W(x,u,Vu)<pw5dx,
Q

T(p) = /fogodx+Z/ijjgodx.

Q e

Then u € X is a (weak) solution to problem (P) if

B(u, ¢)

B1(u, ¢) +Ba(u, ) + B3(u, ) + Ba(u, ¢) + Bs(u, ¢)

T(p),

forall p € X.
Step 1. For j = 1, ..., n we define the operator F; : X —>L"(Q,w3) as

(Fju)(x) = A;(x,u(x), Vu(x)).

We now show that the operator F; is bounded and continuous.

(1) Using (H4) and Theorem 2.2 (with k = 1, since w3 € A,) we obtain

’

-
L' (Qws)

= / |Fju(x)|r/a)3 dx
Q

[|Fjull
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= / |A; (x, u, Vu)|" ws dx
Q

rl
s/(Kl+h1|u|f/f’+h2|vu|’/f’) w3 dx
Q

< [

=C, Kf/w3dx+/h{llulrwgdx+‘/h§/|Vu|rw3dx]
Q Q

(K} + 1Y Ju]” + h;’|w|r)w3]dx

r(nKlur, @y + Il @l @+ 12 11V 1 wg))
scr(nK] 17 gy + 1@ Call 192 7 () + 12l )l [Vt ||’L,(Q,w3))
scr(nKln’Lif(g,wS) +(CG M7 + ||hz||z;(g)>||u||§), (3.1)

where the constant C, depends only on r. Therefore, in (3.1) we obtain

IFjull 1 (.00m)

1/r’ - -
<c," (||K1 Iz @) + (Co Nl sy + N2l s o) Hluell 1)-

(i1) Let u,,— u in X as m — oo. We need to show that Fju,,—Fju in L"'(Q, w3). We will apply
the Lebesgue Dominated Convergence Theorem. If u,,— u in X, then |Vu,,|— |Vu| in L (Q, w3).
Using Theorem 2.1 (since w3 € A,), there exist a subsequence {u,,, } and a function ®; € L" (Q, w3)

such that

Up, (X)— u(x) a.e. in Q,
D juy, (x) = Dju(x) a.e. in Q, (3.2)

Vi, (x)|<P;(x) a.e. in Q.
By Theorem 2.2 (with £ = 1, since w3 € A,) we have

it 1 ) < Call Vit 1y < Coll Pl (@) (3.3)

lull2r(@.uws) < Call IVul ll1r (0w < Call®illr (.04 (3.4)

Next, applying (H4), (3.2), (3.3) and (3.4) we obtain
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||F]umk - Fju||2r’(9,w3)
:/|Fjumk(x)—Fju(x)|r’w3 dx
Q
:/|ﬂj(x,umk,Vumk)—ﬂj(x,u,Vu)lr’ug dx
Q
SCr/(lﬂj(x’umk,vumk)lrl+|ﬂj(x,u’vu)|r/)w3dx
Q

rl
<C, /(K1+h1|umk|r/r1+h2|Vumk|r/r’) w3 dx
Q

+/(Kl+h1|u|’/”+h2|vu|’/”) wgdx]
Q

sCr[/Kf/a)gdx+/hqllumklrwgdx+/h§,|Vumk|rw3dx
Q Q Q

+/K{/wgdx+/h§’|u|rw3dx+/hg’qulrwgdx
Q Q Q

< 2cr[||1<1||r,,(g,w3) F(CHII e + Il @) 1P

By condition (H1), we have
Fjumk (X) = k?(] (-x’ Umy (X), Vumk (X))—) k?{j(xa M(.X), VM(X)) = FJM(X),
as my — +oo. Therefore, by the Lebesgue Dominated Convergence Theorem, we obtain
| Fjtm, — Fju”Lr’(g’m)_) 0,

that is,

Fium, — Fju in L™ (Q, w3).

We conclude from the Convergence Principle in Banach spaces (see Proposition 10.13 in [19]) that
Fium— Fju in Lr’(Q, w3). (3.5
Step 2. We define the operator G : X — LS'(Q, wyg) (j=1,...,n) by
(Gju)(x) = B;(x,u(x), Vu(x)).

This operator is continuous and bounded. In fact,
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(1) Using (H8), Theorem 2.2 (since w3 € A,) and Remark 2.4(b) we obtain

’

S
L' (Quws)

= / |Gju(x)|sla)4 dx
Q

= / |B;(x,u, Vu)|* wa dx
Q

1Gjull

s/
S/(K2+g1|u|s/s’+g2|Vu|s/s’) w4 dx
Q
SCS/[(K;I+g‘il|u|s+g§/|Vu|s)a)4]dx
Q

/K;’w4dx+/gf’|u|sa)4dx+/g;/|Vu|sw4dx]
Q Q Q

< cs(uKzu;s,(Q,w 181155 o 1l gy + 182115 11V ||1s(g,w4))

= C;

< cs(||K2||2;,(Q’w4) + 1811y M3 lull} .0

+M§|Ig2||sL;o(g)|| |Vl ||SLr(Q,w3))

< CS(” Kall} i * 8103 € M3 119l 1 )

+ M3 g2l g Il 1Vul ||er(Q,w3))

< CS(||K2||SL;'<9,w4) +(Co M3llgi @ + M3 "gzlli;(ﬂ))"”"i‘)’ o0

where the C depends only on s. Therefore, in (3.6), we obtain

”Gju”LS'(Q’aM)

1/s’ - - -
<cl’ (||K2||Ls'(g,w4) + M7 (CG gl + 11821l () llully 1)- (3.7

(ii) Let u,— u in X as m — oco. We need to show that G ju,,— G ju in L*'(Q, ws). We will apply
the Lebesgue Dominated Theorem. If u,,— u in X, then |Vu,,|— |Vu| in L (Q, w3).

Next, applying (H8), Theorem 2.2, Remark 2.4(b), (3.2), (3.3) and (3.4) we obtain

’

NG jum, — Gju||ss,(9’w4) = /Q |G juum, (x) = Gju(x)ls/a)4 dx

:/|Bj(x,umk,Vumk)—Bj(x,u,Vu)lsl(mdx
Q
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<¢, / (IBj(x, s Vitm)|* + |B,~<x,u,w>|s’)w4 dx
Q
S’
SCS[/(K2+g1|umk|s/sl+g2|Vumk|s/Sl) w4 dx
Q
S/
+/(K2+g1|u|5/s +g2|Vu|s/s) a)4dx]
Q
<c| [Kwsdrstalilo [ Tl ordes el [ Vb ods
Q Q Q
v K ondc el [ @+ gl [ 19 wsa
Q Q Q
< cs[ /Q K3 wa dx + (181115 o) M3 lttm, 13 (g 0s) + 182115y M3 1Vttmi | 1 ()
+ /Q K5 wa dx + 11811z M3 1l (0 + 8211700 M3 1981 11 .0
< ZCS[HKQHSL,(QM) +1lg1 ”sL;O(Q)ngM;”(D] ”ir(g,m) + ||g2||2;o(g)M§v”(Dl ”;;r(g,m)
= 2Cs(||K2||2;f(Q,w4) + M3 (C 18111y + 1821150 @) 191 127 (0,00 |-
By condition (HS5), we have
Gjumk(-x) = Bj(x’ umk(x)7 Vumk (X))—)B]‘(X,M(X), VM(.X)) = GjM(X),
as my — +oo. Therefore, by the Lebesgue Dominated Convergence Theorem, we obtain
||Gjumk - GjullLs'(Q,w4)_> O,

that is,

Gjupm, — Gju in le(Q,a)4).

We conclude from the Convergence Principle in Banach spaces (see Proposition 10.13 in [19]) that
Gjum— Gju in L°(Q,wy). (3.8)
Step 3. We define the operator F : X— L? / (Q,w;) by
(Fu)(x) = |Au(x)|P~? Au(x).

We now show that operator F is bounded and continuous.
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(1) We have

P _ p’
1P gy = [ TP w1 ds

’

p
= / P2 Aul  wydx
= /|Au|pw1dx
= IAMIIL,,(QM)
< ||u||§. 3.9
Therefore, in (3.9), we obtain
-1
”FMHLP'(Q,(L)I)S”u”?( > (310)

and hence the boundedness.
(i1) Let u,,— u in X as m— 0. We need to show that Fu,,— Fu in LP'(Q,wl). If up,—»uin X
then Au,, — Au in LP (€, wy). Using Theorem 2.1, there exist a subsequence {u,,, } and a function

®, € LP(Q, wq) such that

Aty (x) = Au(x) a.e. in Q, (3.11)

|Auy, (x)| < DP2(x) ae. in Q. (3.12)

Now, since p > 2, using (3.11), (3.12),a =p/p’=p—1landa’ = (p — 1)/(p — 2), there exists a

constant @, > 0 (by Lemma 2.3(a) ) such that
| Fityn — Ful?,

Lr'(Qwi)

= / |Fumk —Fl/llp w1 dx
Q

.
<

< aﬁ// |Auy, — AulP’ (20,)P~2P" ) dx

’

p

| A, |p_2Aumk - |Au|p_2Au w1 dx

p/
@p | At — Au| (|Atty, | + |Aul )P—z] w; dx

= 2(=2p’y /|Aumk — Aul? d)(p 2p wldx

, , 1/a ., 1/a’
SZ(p_z)pla/Z (/ |Atty, — Aul? “wldx) (/(I)gp—Z)p “ wldx)
Q Q
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o, p'lp (p-2)/(p-1)
— 2(-2)p a,ll; (/ | Ay, — Aul|? wy dx) (/ <I>§’ w1 dx)
o Q

_ _2 ’ ’ ’ /( _2)
= 2072 o (| Aty = Aull] 0 P27 G

) ’ ’ ’ "(p=2
<207, —ully 121,00

Hence,

-2

-2
1Fttm = Futll o 0oy < 2072 @p Nty = ullx 192117 6 0

Therefore (since 2 < p < o), we obtain ||Fu,,, — F“||Lp’(9,wl)_’ 0, that is,
Fuy, — Fu in L (Q,w).

By the Convergence Principle in Banach spaces (see Proposition 10.13 in [19], we have
Fuu,— Fu in L? ' (Q, w). (3.13)

Step 4. Define the operator G : X—L1' (Q, w»), (Gu)(x) = |Au(x)|?>Au(x). We also have that
the operator G is continuous and bounded. In fact:

(1) If ¢ > 2, we have by Remark 2.4 (a)

Gl gy = [ 101 80l 03 = [ fsutt oy

18Ul 6

q q
M Aull} ) )

IA

IA

MY [ull%-

Hence, [|Gull 14" (.0, < M{ ull%".
(i1) Now using (3.11), (3.12), Remark 2.4(a), b = qg/q’ =g—1and b’ = (¢ - 1)/(q-2) (if g > 2),

there exists a constant a, > 0 (by Lemma 2.3(a)) such that

|Gum, — Gullzq’(g,wz) = /Q | Gum, — Gul|? ws dx

’

q

= / ‘ |Aumk|q_2 Aty — | Aul?7? Au|  w, dx
Q

i

SQZ,/ | Aty —Ault" (2®,) D ), dx
Q

ql
@y | Aty — Aut| (|Att, | + |Au|)(‘1_2)] ws dx
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/ 1/b L 1/b’
<2024 ag (/ |Atty, — Aul? dx) (/ q)éq_zm " w dx)
Q Q

, , q'/q (q=2)/(g=1)
= ag 2(a-2)q (/ |Attyy, — Aul? wgdx) (/@ngdx)
Q Q

_ ’ 4 "(g=2
= af 29029 | Auyy, ~ Aull?, 19152

_ , ’ "(g=2 "(g-2
<@l 29420 MY || Aty — Al MO T o292

2
<ag 29729 Ml|luy,, —ullf D012, 02

-2 1
Hence, [|Gup, — Gull ' (.0, <27 g M{~ |I®2||Lp(9w,) i, — ullx

In the case g = 2 we have (Gu)(x) = Au(x). Hence,

IGullr2(.w,) = 18Ul 12(0.0,) < MillAullr(.0,) < Millullx,

|G, = Gtll 2y < MillAtt, = Atll o) < Mt — .

Therefore (for2 < g < o), weobtain ||Gu,,, — Gu||Lq/(Q’w2) — 0, thatis, Gu,,, — Guin LY (Q, w)).

By the Convergence Principle in Banach spaces (see Proposition 10.13 in [19]), we have
Guy — Guin LY (Q, wy). (3.14)
Step 5. We define the operator H : X — L% (Q, ws) by
(Hu)(x) = H(x,u(x), Vu(x)).

We also have that the operator H is continuous and bounded. In fact,

(i) Using (H12), Theorem 2.2 (since w3 € A,) and Remark 2.4(b) we obtain

V4
VHll g

:/|Hu|Z ws dx
Q

= / |H (x, u, Vi) |* ws dx
Q

Z/
S/(K3+h3|u|z/zl+h4|Vu|Z/Z,) ws dx
Q

<C, /(Kg’ + 1S ul* + B3 | Vulf)ws dx
Q

<C [ K5 wsdv el [ luFwsdrs Il g, [ 1Vufos ds
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< cz(||z<3||;z, o+ I oy M

+[|all;

o MEIN IVl [

’(Q,w3))

(nmn; o T M5 CEIIE g + Ihalls ) ||u||;), (3.15)

where the constant C, depends only on z. Hence, in (3.15), we obtain

12/ e _
1Hull e (.05 < cl: [||K3||Lz’(g,w5) + M CE 3l gy + I1all Lo Nl |-

(i1) Applying (H9), (H12), Remark 2.4(b), (3.2), (3.3) and (3.4) by the same argument used in Step

1(ii), we obtain analogously, if u,, — u in X then
Hu,u— Hu, in L¥ (Q, ws). (3.16)

Step 6. Since — Ji el (Q w3 (j j =0,1,...,n) then Te X*. Moreover, by Theorem 2.2 (with
w3

k =1, since w3 € A,) we have

n
Te)| < /Q|f0||90|dx+2/g|fj||0j90|dx
|0| | /51
- [ Lo dx+Z 1D s ds
n
< fofwsllr @€l @ + (Z ||f,-/w3||ul(g,w3))|| 6l 2 (0
=1
< Call /w3l @l 1961 1 (@
n
+ (Z ||Js‘/w3||y/(g,w3))|| Yol (@0
=
<

n
(cg Wosll aom + D ||f,-/w3||yf(g,w3>)||<,o||x.

j=1

Moreover, we also have

B(u, )| < [Bi(u, 9)| + [B2(u, )| + [B3(u, )| + [By(u, 0)| + [Bs(u, ¢)|

/ A e, 1, Vi) [Vep] s dx + / 1B(x, 1, V)| [Veo] s dx
Q Q

IA

+

/|Au|p_1|Ag0|w1dx+/|Au|q_1|Ag0|w2dx
Q Q
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+ /lW(x,u,Vu)||90|w5dx. (3.17)
Q

In (3.17) we have:
(i) By (H4) and Theorem 2.2,
[ 16,9019l 03
Q
< / (K1+h1|u|r/"+h2|Vu|’/" V| w3 dx
Q
<Kl @.wn HV Rl 1 (@u05) + ||h1IILw(gz)IIuIIrL/f(Q,wS)II Vel llr @.ws)
lhall @l 19ul 1 o 1196 L @
< (||K1||Lr’(9,w3) +(CG Ml oy + N2l o)l el x-

(i1) By (H8), Theorem 2.2 (with k = 1, since w4 € Ay) and Remark 2.4(b)

/ 1B(x, 1, Vi) | [Vep| wos dx
Q

< /Q (Kz +g1ul* + ga| Vul || Vo] wy dx

< 1Kzl @ 1901 @ + 81 @ Il o) 11961 2 20
+llg2ll o (gl [V II%S(;lwll Vol s (@.ws)

< M2||K2||Ls’(g,w4)“ Vol ll L (.05

+ M3~ CE g1l @) Vel 157 () M2l 1V 2 (@0

+ M3~ llgall oo 1 1Vul 157 {@.up M2l IV 2 (0.0)

s[Manansf(Q,m) + (M3 5 gl ey + M lgall o) el [Tl
(ii1) By (H12), Theorem 2.2 (since w3 € A,) and Remark 2.4(b)
[ T el s s
s/g(K3+h3|u|z/2’+h4|vu|z/2’)|¢p|w5 dx

< /Q K3 |p| ws dx + ||l Lo (o /Q ul** || ws dx + || hall Lo /Q IVul*/* | p| ws dx

S K3l e (@5 11l L2 (@u5) + ||h3||L°°(Q)”u”i/zz(g,ws)”QpllLZ(Q,wS)

Hhall @l IVl 15 o 1002 (.05)
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< M3 1Kl @ 101l () + 1311 @ M5 137 0y M3 112N L ()

#lhall oM IV 1L o M3l (00

<|M3Ca K3l 12 (g + ME(CE 1 h3]l 1o () + ||h4||Lw(g))||u||§{1] lellx-
(iv) We have
) 1/p’ 1/p
/lAu|p_1|Acplw1 dx < (/lAuW’“Up w1 dx) (/|Ag0|pw1dx)
Q Q Q
-1
= 1Al rlg o 1G] Lo (00
-1
<l el
(v) By Remark 2.4(a),
<

1/q’ 1/q
(/lAul(q_l)q wzdx) (/lAgolqwzdx)
Q Q

-1
= NAullfy(gu,) 18110 @0)

/ AUl Ag] ws dx
Q

-1 -1
< MU g MA@

-1
< M ully llellx-
Hence, in (3.17) we obtain, for all u, o € X

B, @)l < |IKillzr @y + (C A1l + N2l @) lully !

+ MallKallps . + M3(CE g1 o) + 182l @) el

+ M3CallKll 2 () + M5(CE 31l () + l1all o) el
-1 -1

+ Ml + Ml [l

Since B(u, .) is linear, for each u € X, there exists a linear and continuous functional on X denoted
by Au such that (Au|¢) = B(u, ¢), for all u, ¢ € X (here (f|x) denotes the value of the linear

functional f at the point x). Moreover
lAull, < 1Kl @ + (Co Il o) + A2l @) el
+ MoKl (.0 + M3(CE 1110y + g2l (@) el

M3CallKsll et (0,05 + M3 (CE I3l Ly + Ihall @) Il !

-1 -1
+ Nl + Ml

—+

where ||Au||, = sup{|(Aulp)| = |B(u, ¢)| : ¢ € X, ||¢||x = 1} is the norm of operator Au.
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Hence, we obtain the operator

A: X->X*

ur Au.

Consequently, problem (P) is equivalent to the operator equation Au =T, u € X.

Step 7. Using (H2), (H6), (H10) and Lemma 2.3(b), we obtain (for uy, ur € X, uj # uy)

(Auy — Ausluy — uz)
=B(ur,ur —uz) — B(uoz, uy — us)

= /Q (|AM1|p_2AM1 - |AM2|p_2Au2) A(uy — uz) wy dx

+ /Q (|AM1 1972 Ay — |Auz|q_2AM2) A(uy — uz) wy dx

+ /Q (A(x,u1, Vuy) = Ax, uzaVur), V(uy — us)) w3 dx
+ /Q (B(x,u1, Vuy) — B(x,uz, Vuz), V(uy — uz)) wy dx
+ /Q (H (x,u1, Vuy) = H(x, uz, Vuz)) (u1 — uz) ws dx

p—2
Zﬁp/ (|AM1| + |AM2|) |Auy — Auz|? wi dx
Q

q-2
+,Bq/ (lAu1| + |Au2|) |Auy — Aup|? ws dx
Q
+91/ |V(u1 - uz)lr w3 dx+92/ |V(u1 — uz)ls w4 dx
Q Q
p—2
Zﬁp/ (lAull + |AM2|) |Auy — Aup|? wy dx + 0, / |V (u1 — us)|” w3 dx
Q Q
Zﬁ,,/ |Auy — Aup|P~2|Auy — Aup|? wy +91/ V(11 — uz)|” w3 dx
Q Q
:,Bp/ |Auy — Aup|P wq dx + 64 / [V(uy —uz)|" w3 dx > 0.
Q Q
Therefore, the operator A is strictly monotone. Moreover, we have by (H3), (H7) and (H11),

(Aulu) B(u,u) =Bi(u,u) +Bo(u,u) + Bs(u,u) + Bq(u, u) + Bs(u, u)

/|Au|pw1dx+/|Au|qw2dx

Q Q
/<&Zl(x,u,Vu),Vu)w3dx+/<B(x,u,Vu),Vu)a)4dx
Q Q

+
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+

/ H(x,u,Vu) u ws dx
Q

/lAulpwldx+/|Vu|qw2dx
Q Q
/11/|Vu|rw3dx+/12/|Vu|sw4dx+A2/|u|sw4dx
Q Q Q
/13/|Vu|za)5dx+/\3/|u|za)5dx
o) Q

/|Au|”w1dx+11/|Vu|rw3dx
Q Q

7 (”AMVZP(Q,M) *IHvul ”rLr(Q’w}))’

\%

—+

+

\%

\%

where y = min{A;, 1}. Hence, since 2 < p < oo and 1 < r < co we have

(Aufu)

[lull x

— + 09, as ||lully — + oo,

P +a"

that is, A is coercive (using that lim = oo, witht > 0 and a > 0).

t+a—oo [+ q
Step 8. We need to show that the operator A is continuous. Let u,,— u in X as m — oco. We have,

n
Balin. )~ Bae )l < ) [ 10k Vi) = 4y ks, V)| el 0
j=1 78

n
= Z/Q|Fjum—Fju||Dj<p|w3dx
j=1

n
< ( ||Fjum—F,~u||Lw(Q,w3))|| 196l 12+ (@
=1
n
< (Z 1yt F,~u||L,,(Q,w3))||so||x,
j=1
and, by Remark 2.4(b),
n
B4 (ttm, ) — Ba(u, p)| < Z/IBj(x,um,Vum)—Bj(x,u,Vu)llesolmdx
j=1 78
n
= Z/lGjum—Gju||ng0|w4dx
j=1 7%
n
< ( ”Gj”m - Gfu”LS'(Q,au))” Vol ||LS(Q,u)4)
j=1
<

n
M, (Z G jum - Gju”Ls’(g,Vz))” Vol 7 (@uws)
7=

Page 20



Pure and Applicable Analysis 2022, 2022: 7 https://www.lynnp.org

n

< M2 316 un = Gl el
j=1

and we also have

1B (ttm, @) — Bi1(u, p)|

IA

/ ‘|Aum|p_2Aum — |Au|P2 Aul|Ap| w) dx
Q

= /|Fum — Ful|Ap| w; dx
Q

||Fum - FM”LP'(Q’(UI) ”A()D”LP(Q,wl)

IA

IA

”Fum - FM”LP'(Q,Q)I) ”SOHXa

and by Remark 2.4(a)

IA

| At |92 Aty — |Au|972 Au||Ag| wo dx

B2 (et ) — Ba(u, 9)|

J

= /lGum—GuHA(plwzdx
Q

IA

1Gum — Gull Lo’ (@.,) I8¢ L9000

IA

M |Guy, — Gu”Lq'(Q,wl) ||A(ID||LP(Q,Q)1)

IA

My |Gum = Gull Lo’ (@ 0,) l€llx-

and by Remark 2.4(b))

IBs () — Bs(u, )|

IA

/ H s s Vi) = H (e, 0, Vi) o] s dx
Q

/ \Hity — Hul |¢] ws dx
Q

IA

||Hl/lm — Hu”LZ’(Q,ws) ||()D||LZ(Q,(1)5)

IA

M3||Hl/tm - Hu”Lz’(Qﬂ)S) ”SDHLI’(Q,LU})

IA

M3||Huy — Hull 127 (@.w5) CallVell 1r(@uws)

IA

M5 Cq ”H”m - H””LZ'(Q,wS)”‘P”X’
for all ¢ € X. Hence,
IB(ttm, ) — B(u, p)|

< |B1(um, @) — B1(u, @)| + [B2 (1, ) — Ba(u, 9)|

+ B3 (um, ¢) — Ba(u, ¢)| + [Ba(u, @) — By(u, )|
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+ |B5(um’ ()D) - BS(”? ‘)D)l

n n
D N Fjm = Fiull gy + M2 Y NG jttm = Gl 1o g
J=1 j=1

<

+|| Fum - Fu”LP'(Q,wl) + Mi||Gup — Gu”m’(g,wz)

+M3CQ||Hum - Hu”Lz’ (Qws) ”‘)DHX

Then we obtain

n
”Aum_Au”* < Z(”Fjum_Fju”Lr’(Q,wS)+M2||Gjun’l_G]'u”Ls’(Q’w“)
j=1
+ |[Fum —Fu”Lp/(Q,wl)"‘Ml”Gum _Gu”LQ’(Q,wz)
+ M3 CQ”HMm _Hulle’(Q,ws)'

Therefore, using (3.5), (3.8), (3.13), (3.14) and (3.16) we have ||Au,, — Au||,— 0 as m — +oo, that
is, A is continuous and this implies that A is hemicontinuous.

Therefore, by Theorem 3.1, the operator equation Au = T has a unique solution « € X and it is the
unique solution for problem (P).

Step 9. Estimates for ||u||y, if 2 < r < co. In particular, by setting ¢ = u in Definition 2.4, we have
B(u,u) =By(u,u) +Ba(u,u) + B3(u,u) + Bg(u,u) + Bs(u,u) =T (u). (3.18)

Hence, using (H3), (H7) and (H11) we obtain

B(u,u) By(u,u) +Ba(u,u) + B3(u, u) + B4(u,u) + Bs(u, u)

/ (A(x,u,Vu), Vu) w3 dx + / B(x,u,Vu), Vu) wy dx
Q Q

+

/|Au|pw1 dx+/|Au|qa)2dx+/(H(x,u,Vu)uw5dx
Q Q Q

\%

/11/|Vu|rw3dx+/|Au|pa)1 dx, (3.19)
Q Q

and, since w3 € A,,

T(u) = /Qfoudx+;/gijjudx

n
1 fo/ w3l (@ 14l Lr (@.05) + (Z IIJ‘j/wslle(QM))ll IVul |2 (@05
=1

IA
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IA

n
(cg ool + > ||f,~/w3||L,./(Q,w3)) lully
=1

J:
= M ullx. e

where M = Cq || fo/wsll - (@.uws) + Z ||fj/w3||L’/(Q,a)3)' Hence in (3.18), using (3.19) and (3.20),

j=1
we obtain
A / [Vu|" w3 dx+/ |Aul? wy dx < M |Ju||x.
Q Q
Therefore,
| Aul? <M |lully and || [Vul I} M [l
LP(Quwy) — X LM (Qw3) = A X-

By Young’s inequality, we obtain

lullx = lAullze@w) + 1Vl 2 @0

1/r
1 M 1
MYP ||u) VP + (Z) "

IA

1 1 1 (M
—M? /p+—||”||x+—,(—) + ~lull.
p p r’'\A; r

IA

Since 2 < r,p < oo, then 1/r+1/p < 1. Therefore, we obtain
l p/_l 1 r’—1
lully <yp,r|—M +—(M/A) ,
p r
where y,, =pr/(pr—p-r).
2y5/2

Example. Let Q = {(x,y) €eR? : x?> + y? < 1}, the weight functions w;(x,y) = (x> +y

232, wi(x,y) = (2 + )7V wa(x,y) = (2 +yH)713 and ws(x,y) =

()c2 +yz)_1/3 (w3 €Ay, g €A3, W1 €EAs, wWr € A3, p=5,q9=3,r =4,s =z =3), and the function

wr(x,y) = (x> +y

A QxR R?
A((x,9),€) = hi(x,y) [€]7 €,

where h(x,y) = 2e(x2+y2), and

B QOXxRxRZ—R?

B((X, y), 77,5) = gZ(X’y) |§|€a
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where g>(x,y) = 2 + cos(x? + y?) and

H:QxRXxR*>R

H((x,y),n,&) = h3(x,y) n,
where /13(x,y) = 1 +sin?(xy). Let us consider the partial differential operator

Lu(x,y) A[|Au|3Au wi + |Au|Auw2]

div (A((x, y), uVu) w3 (x, y) + B((x,y), u, Vu)wa(x, y))

7-{((x’ y)’ u, Vu) U)S(X, y)

+

Therefore, by Theorem 1.1, the problem

Lu(x) = cos(xy) _E(M) i( sin(xy) ) n o

= — - mn
u(x) = Au(x) =0 on 9Q

has a unique solution u € X = W01’4(Q, w3) N Wg’S(Q, w1).
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