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Abstract

In this work, we discuss the existence and stability of solution for a quaternion fuzzy

fractional differential equation in the generalized regular fuzzy function space with Ξ-Hilfer

fractional derivative. First of all, we give some definitions, theorems, and lemmas that are

necessary for the understanding of the manuscript. Second of all, we give our first existence

result, based on fixed point theorem and to deal with the uniqueness result. Next, this article is

devoted to the investigation of the stability results. We employed a version of Piccard operator

theorem to study the stability in the sense of Ulam-Hyers. In the end, we provide a couple of

examples to illustrate our results.
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1 Introduction

Fractional calculus has been appearing in a wide range of fields, such as chemistry, economics,

polymer rheology, and aerodynamics. This is due to the existence of many nice tools (see for

instance [3, 4, 5, 6, 7]) that are not available in the classical calculus. Ξ-Hilfer fractional derivatives

have been a considerable interest in the fractional calculus. The concept of fractional derivative

of a function with respect to the another function Ξ suggest a new idea of fractional derivative.

Many interesting results concerning the existence and stability of solutions by using various kinds

of fixed-point techniques are available in the literature survey, one can refer to [8, 9, 10, 11, 12, 13]

and references therein.

In this study, we investigate the existence and stability criteria for the solutions of the following

initial value problem 
𝐷
𝛼,𝛽,Ξ

0+𝑡 𝜇 =
∑3
𝑗=1 𝐴

( 𝑗) 𝜕A
𝜕𝑦 𝑗

+ 𝐵A + 𝐶 := L(A )

𝐼
(1−𝛼) (1−𝛽),Ξ
0+𝑡 A (0, 𝑦) = 𝜑(𝑦),

(1)

where Ω is a bounded in R3 and 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝑂𝑚𝑒𝑔𝑎. 𝐷𝛼,𝛽,Ξ

0+𝑡 is the Ξ-Hilfer fractional

derivative of 𝑡; 𝑡 ∈ [0, 𝑇] is the time variable; A = A (𝑡, 𝑦) is a quaternion fuzzy-valued functions

defined in [0, 𝑇] ×Ω. 𝐵 = 𝐵(𝑡, 𝑦), 𝐴( 𝑗) = 𝐴( 𝑗) (𝑡, 𝑦) and𝐶 = 𝐶 (𝑡, 𝑦) are quaternion-valued function

defined in [0, 𝑇] × Ω. The initial function 𝜑(𝑦) is a generalized regular fuzzy function. We adopt

some ideas from [14].

In 1989, Buckley [1] gave the first step towards the extension of fuzzy real numbers to complex

fuzzy numbers. The quaternion membership function is given by A : H → [0, 1] such that

A (𝑎 + 𝑏𝑖 + 𝑐 𝑗 + 𝑑𝑘) = 𝑚𝑖𝑛{A0(𝑎),A1(𝑏),A2(𝑐),A3(𝑑)}

where A𝑖, 𝑖 = 0, 1, 2, 3 are real fuzzy numbers.

2 Preliminaries

Let us recall some basic definitions and notations of fractional calculus which is needed throughout

this study.
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Let E𝐾 (R3) denote the family of all nonempty convex compact subsets ofR3. The Hausdroff metric

for A ,B ∈ E𝐾 (R3) is defined as

𝑑 (A ,B) = 𝑖𝑛 𝑓 {𝜀 |A ⊂ 𝑁 (B, 𝜀) and B ⊂ 𝑁 (A , 𝜀)},

where 𝑁 (A , 𝜀) = {𝑎 ∈ R3 : ‖𝑎 − 𝑏‖ < 𝜖 for some 𝑎 ∈ A }. Throughout this paper, we denote

Λ := {0, 1, 2, 3} and 𝑒0 = 1, 𝑒1 = 𝑖, 𝑒2 = 𝑗 , 𝑒3 = 𝑘 , where 𝑖, 𝑗 , 𝑘 are units of the real quaternion

algebraH .

Definition 2.1. The quaternion membership function 𝑓 is defined by

𝑓 (𝑉,A ) = 𝑒0 𝑓0(𝑉) + 𝑒1 𝑓1(A ) + 𝑒2 𝑓2(A ) + 𝑒3 𝑓3(A ),

where 𝑉 is to be interpreted as a set in fuzzy set of sets and A ∈ 𝑉 .

In particular, for A ∈ R3, we have

𝑓 (A ) = 𝑒0 𝑓0(A ) + 𝑒1 𝑓1(A ) + 𝑒2 𝑓2(A ) + 𝑒3 𝑓3(A ),

where 𝑓0, 𝑓1, 𝑓2, 𝑓3 : R3 → [0, 1]. Denote 𝑓 by ( 𝑓0, 𝑓1, 𝑓2, 𝑓3). Then, the 𝛼 = (𝛼0, 𝛼1, 𝛼2, 𝛼3)-level

set of 𝑓 = ( 𝑓0, 𝑓1, 𝑓2, 𝑓3) is defined as

[ 𝑓 ]𝛼 = [ 𝑓0]𝛼0 ∩ [ 𝑓1]𝛼1 ∩ [ 𝑓2]𝛼2 ∩ [ 𝑓3]𝛼3 . (2)

Denote 𝐽𝑛 the set of allB : R𝑛 → [0, 1] satisfying of the following conditions:

(i) B is normal, i.e., there exists 𝑦0 ∈ R𝑛 such thatB(𝑦0) = 1;

(ii) B is fuzzy convex, i.e., for all 𝑎, 𝑏 ∈ R𝑛, 𝜆 ∈ [0, 1]:

B(𝜆𝑎 + (1 − 𝜆)𝑏) ≥ 𝑚𝑖𝑛{B(𝑎),B(𝑏)};

(iii) B is upper semi-continuous;

(iv) [B]0 is compact.

Moreover, we define 𝐽4𝑛 as follows:
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𝐽4𝑛 = {(B0,B1,B2,B3) ∈ 𝐽𝑛 × 𝐽𝑛 × 𝐽𝑛 × 𝐽𝑛 |∃𝑡0, 𝑠.𝑡., 𝜔𝑙 (𝑡0) = 1, 𝑙 ∈ Λ}.

Then, for 𝜔 = (B0,B1,B2,B3) ∈ 𝐽4𝑛, [𝑔]𝛼 = ∩𝑙∈Λ [B𝑙]𝛼𝑙 ∈ E𝐾 (R3) where 𝛼𝑙 ∈ [0, 1], 𝑙 ∈ Λ.

For 𝑔, 𝑓 ∈ 𝐽4𝑛, where 𝑓 = ( 𝑓0, 𝑓1, 𝑓2, 𝑓3) and 𝑔 = (𝑔0, 𝑔1, 𝑔2, 𝑔3), and 𝜆 is a scalar, let

𝑓 + 𝑔 = ( 𝑓0 + 𝑔0, 𝑓1 + 𝑔1, 𝑓2 + 𝑔2, 𝑓3 + 𝑔3),

𝜆𝑔 = (𝜆𝑔0, 𝜆𝑔1, 𝜆𝑔2, 𝜆𝑔3).

Let us define a metric D : 𝐽𝑛 × 𝐽𝑛 → [0,∞) by

D(B1,B2) = 𝑠𝑢𝑝{𝑑 ( [B1]𝑟 , [B2]𝑟) |𝑟 ∈ [0, 1]}, (3)

where 𝑑 is the Hausdorff distance. The metric space (𝐽𝑛,D) as a cone can be embedded iso-

morphically in a Banach space. However, D is not a suitable metric for our space of interst, 𝐽4𝑛,

as we quickly see that linearity is violated. Instead, let us consider the product metric D ′ on

𝐽4𝑛 = 𝐽𝑛 × 𝐽𝑛 × 𝐽𝑛 × 𝐽𝑛. For 𝑓 = ( 𝑓0, 𝑓1, 𝑓2, 𝑓3) ∈ 𝐽4𝑛 and 𝑔 = (𝑔0, 𝑔1, 𝑔2, 𝑔3) ∈ 𝐽4𝑛, we modify

the metric as D ′ : 𝐽4𝑛 × 𝐽4𝑛 → [0,∞)

D ′ ( 𝑓 , 𝑔) = D ′ (( 𝑓0, 𝑓1, 𝑓2, 𝑓3), (𝑔0, 𝑔1, 𝑔2, 𝑔3))

= 𝑚𝑎𝑥𝑙∈Λ{D( 𝑓𝑙 , 𝑔𝑙)}. (4)

Then, the zero element on 𝐽4𝑛 is denoted as 0̂4(𝑦) = (0̂(𝑦), 0̂(𝑦), 0̂(𝑦), 0̂(𝑦)) ∈ 𝐽4𝑛. It is clear that

D ′ is a linearity preserving metric for 𝐽4𝑛. Since 𝐽4𝑛 ⊂ 𝐽4𝑛, D ′ is also metric for 𝐽4𝑛. Hence,

(𝐽4𝑛,D) is a complete metric space. The metric space (𝐽4𝑛,D) can be embedded into a Banach

space by the Arens-Eells theorem.

We introduce the strongly generalized differentiability in terms of the generalized Hukuhara differ-

ence. For 𝑢, 𝑣 ∈ 𝐽4𝑛, if there exists 𝑤 ∈ 𝐽4𝑛 such that 𝑢 = 𝑤 + 𝑣 or 𝑣 = 𝑢 + (−1)𝑤, then we call 𝑤

the difference of 𝑢 and 𝑣 and denote it as 𝑢 	 𝑣 = 𝑤.

A fuzzy-valued function 𝐹 defined on the bounded, simply connected domainΩ ⊂ R3 is a mapping

𝐹 : Ω → 𝐽4𝑛, and 𝐹 can be represented in a form 𝐹 =
∑3
𝑗=0 𝑒 𝑗𝐹𝑗 (𝑦). Its conjugate 𝐹̄ is defined by

𝐹̄ = 𝑒0𝐹0(𝑦) 	
3∑︁
𝑗=1
𝑒 𝑗𝐹𝑗 (𝑦),

where 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ Ω and 𝐹𝑗 (𝑦), 𝑗 = Λ are continuous fuzzy-valued functions.
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Definition 2.2. Let Ω ⊂ R3 be a bounded, simply connected domain. The mapping 𝐹 : Ω → 𝐽4𝑛 is

called strongly generalized partial derivative at 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ Ω if there exists some 𝜕𝐹
𝜕𝑦𝑖

∈ 𝐽4𝑛

such that

(i) there exists the differences 𝐹 (·, 𝑦𝑖 + ℎ, ·) 	 𝐹 (·, 𝑦𝑖, ·), 𝐹 (·, 𝑦𝑖, ·) 	 𝐹 (·, 𝑦𝑖 − ℎ, ·) and

𝜕𝐹

𝜕𝑦𝑖
= lim
ℎ→0+

𝐹 (·, 𝑦𝑖 + ℎ, ·) 	 𝐹 (·, 𝑦𝑖, ·)
ℎ

= lim
ℎ→0+

𝐹 (·, 𝑦𝑖, ·) 	 𝐹 (·, 𝑦𝑖 − ℎ, ·)
ℎ

, (5)

or

(ii) there exists the differences 𝐹 (·, 𝑦𝑖, ·) 	 𝐹 (·, 𝑦𝑖 + ℎ, ·), 𝐹 (·, 𝑦𝑖 − ℎ, ·) 	 𝐹 (·, 𝑦𝑖, ·) and

𝜕𝐹

𝜕𝑦𝑖
= lim
ℎ→0+

𝐹 (·, 𝑦𝑖, ·) 	 𝐹 (·, 𝑦𝑖 + ℎ, ·)
−ℎ

= lim
ℎ→0+

𝐹 (·, 𝑦𝑖 − ℎ, ·) 	 𝐹 (·, 𝑦𝑖, ·)
−ℎ , (6)

or

(iii) there exists the differences 𝐹 (·, 𝑦𝑖 + ℎ, ·) 	 𝐹 (·, 𝑦𝑖, ·), 𝐹 (·, 𝑦𝑖 − ℎ, ·) 	 𝐹 (·, 𝑦𝑖, ·) and

𝜕𝐹

𝜕𝑦𝑖
= lim
ℎ→0+

𝐹 (·, 𝑦𝑖 + ℎ, ·) 	 𝐹 (·, 𝑦𝑖, ·)
ℎ

= lim
ℎ→0+

𝐹 (·, 𝑦𝑖 − ℎ, ·) 	 𝐹 (·, 𝑦𝑖, ·)
−ℎ , (7)

or

(iv) there exists the differences 𝐹 (·, 𝑦𝑖, ·) 	 𝐹 (·, 𝑦𝑖 + ℎ, ·), 𝐹 (·, 𝑦𝑖, ·) 	 𝐹 (·, 𝑦𝑖 − ℎ, ·) and

𝜕𝐹

𝜕𝑦𝑖
= lim
ℎ→0+

𝐹 (·, 𝑦𝑖, ·) 	 𝐹 (·, 𝑦𝑖 + ℎ, ·)
−ℎ

= lim
ℎ→0+

𝐹 (·, 𝑦𝑖, ·) 	 𝐹 (·, 𝑦𝑖 − ℎ, ·)
ℎ

. (8)

In general, we have the following results on the connection between the strongly generalized partial

differentiability of 𝐹 and its endpoint functions 𝐹𝛼
𝑙
and 𝐹𝛼𝑟 .

Let 𝐹 : Ω → 𝐽4𝑛 be a quaternion fuzzy function. If 𝐹 is strongly generalized partial derivable at

𝑦 ∈ Ω, then we have the following case:
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If 𝐹 has strongly generalized partial derivative at 𝑦 ∈ Ω in (i), then, for each 𝛼𝑖 ∈ [0, 1], 𝐹𝑖𝑙 and 𝐹𝑖𝑟
are strongly generalized partial derivable functions at 𝑦 and[

𝜕𝐹

𝜕𝑦𝑖

]𝛼
=

[(
𝜕𝐹

𝜕𝑦𝑖

)𝛼
𝑙

,

(
𝜕𝐹

𝜕𝑦𝑖

)𝛼
𝑟

]
,

where (
𝜕𝐹

𝜕𝑦𝑖

)𝛼
𝑙

=

[(
𝜕𝐹

𝜕𝑦𝑖

)𝛼0
0𝑙
,

(
𝜕𝐹

𝜕𝑦𝑖

)𝛼1
1𝑙
,

(
𝜕𝐹

𝜕𝑦𝑖

)𝛼2
2𝑙
,

(
𝜕𝐹

𝜕𝑦𝑖

)𝛼3
3𝑙

]
(9)

and (
𝜕𝐹

𝜕𝑦𝑖

)𝛼
𝑟

=

[(
𝜕𝐹

𝜕𝑦𝑖

)𝛼0
0𝑟
,

(
𝜕𝐹

𝜕𝑦𝑖

)𝛼1
1𝑟
,

(
𝜕𝐹

𝜕𝑦𝑖

)𝛼2
2𝑟
,

(
𝜕𝐹

𝜕𝑦𝑖

)𝛼3
3𝑟

]
. (10)

Definition 2.3. Let 𝐹 : Ω → 𝐽4𝑛 be a continuous mapping. The fuzzy Ξ-type Riemann-Liouville

integral of 𝐹 is defined by

(𝑅𝐿 𝐼 𝛽,Ξ0+ 𝐹) (𝑦) =
1

Γ(𝛽)

∫ 𝑦𝑖

0
Ξ

′ (𝜏) (Ξ(𝑦𝑖) − Ξ(𝜏))𝛽−1𝐹 (·, 𝜏, ·)𝑑𝜏, (11)

where 𝑦 ∈ Ω, 𝑦𝑖 > 0, 0 < 𝛽 < 1.

Moreover, the Ξ-type Riemann-Liouville integral of a quaternion fuzzy-valued function 𝐹 can be

expressed as follows: (
𝑅𝐿 𝐼

𝛽,Ξ

0+ 𝐹
𝛼
)
(𝑦) =

[ (
𝑅𝐿 𝐼

𝛽,Ξ

0+ 𝐹
𝛼
𝑙

)
(𝑦),

(
𝑅𝐿 𝐼

𝛽,Ξ

0+ 𝐹
𝛼
𝑟

)
(𝑦)

]
,

where (
𝑅𝐿 𝐼

𝛽,Ξ

0+ 𝐹
𝛼
𝑙

)
(𝑦) = 1

Γ(𝛽)

∫ 𝑦𝑖

0
Ξ

′ (𝜏) (Ξ(𝑦𝑖) − Ξ(𝜏))𝛽−1𝐹𝛼𝑙 (·, 𝜏, ·)𝑑𝜏

and (
𝑅𝐿 𝐼

𝛽,Ξ

0+ 𝐹
𝛼
𝑟

)
(𝑦) = 1

Γ(𝛽)

∫ 𝑦𝑖

0
Ξ

′ (𝜏) (Ξ(𝑦𝑖) − Ξ(𝜏))𝛽−1𝐹𝛼𝑟 (·, 𝜏, ·)𝑑𝜏.

Definition 2.4. The fuzzy Ξ-type Riemann-Liouville fractional derivative of order 𝑛 − 1 < 𝛽 < 𝑛

for fuzzy-valued function 𝐹 is defined by(
𝑅𝐿𝐷

𝛽,Ξ

0+ 𝐹
)
(𝑦) = 1

Γ(𝑛 − 𝛽)

(
1

Ξ
′ (𝑦𝑖)

𝜕

𝜕𝑦𝑖

)𝑛 ∫ 𝑦𝑖

0
Ξ

′ (𝜏) (Ξ(𝑦𝑖) − Ξ(𝜏))𝑛−𝛽−1𝐹 (·, 𝜏, ·)𝑑𝜏. (12)
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Similarly, we have (
𝑅𝐿𝐷

𝛽,Ξ

0+ 𝐹
𝛼
)
(𝑦) =

[ (
𝑅𝐿𝐷

𝛽,Ξ

0+ 𝐹
𝛼
𝑙

)
(𝑦),

(
𝑅𝐿𝐷

𝛽,Ξ

0+ 𝐹
𝛼
𝑟

)
(𝑦)

]
, (13)

where(
𝑅𝐿𝐷

𝛽,Ξ

0+ 𝐹
𝛼
𝑙

)
(𝑦) = 1

Γ(𝑛 − 𝛽)

(
1

Ξ
′ (𝑦𝑖)

𝜕

𝜕𝑦𝑖

)𝑛 ∫ 𝑦𝑖

0
Ξ

′ (𝜏) (Ξ(𝑦𝑖) − Ξ(𝜏))𝑛−𝛽−1𝐹𝛼𝑙 (·, 𝜏, ·)𝑑𝜏. (14)

and(
𝑅𝐿𝐷

𝛽,Ξ

0+ 𝐹
𝛼
𝑟

)
(𝑦) = 1

Γ(𝑛 − 𝛽)

(
1

Ξ
′ (𝑦𝑖)

𝜕

𝜕𝑦𝑖

)𝑛 ∫ 𝑦𝑖

0
Ξ

′ (𝜏) (Ξ(𝑦𝑖) − Ξ(𝜏))𝑛−𝛽−1𝐹𝛼𝑟 (·, 𝜏, ·)𝑑𝜏. (15)

Definition 2.5. The fuzzy Ξ-type Caputo derivative of 𝐹 for 𝑛 − 1 < 𝛽 < 𝑛 and 𝑦 ∈ Ω is denoted

as
(
𝐶𝐷

𝛽,Ξ

0+ 𝐹
)
(𝑦) and defined by(

𝐶𝐷
𝛽,Ξ

0+ 𝐹
)
(𝑦) = 1

Γ(𝑛 − 𝛽)

∫ 𝑦𝑖

0
Ξ

′ (𝜏) (Ξ(𝑦𝑖) − Ξ(𝜏))𝑛−𝛽−1
(
1

Ξ
′ (𝜏)

𝜕

𝜕𝜏

)𝑛
𝐹 (·, 𝜏, ·)𝑑𝜏. (16)

Then, (
𝐶𝐷

𝛽,Ξ

0+ 𝐹
𝛼
)
(𝑦) =

[ (
𝐶𝐷

𝛽,Ξ

0+ 𝐹
𝛼
𝑙

)
(𝑦),

(
𝐶𝐷

𝛽,Ξ

0+ 𝐹
𝛼
𝑟

)
(𝑦)

]
,

where(
𝐶𝐷

𝛽,Ξ

0+ 𝐹
𝛼
𝑙

)
(𝑦) = 1

Γ(𝑛 − 𝛽)

∫ 𝑦𝑖

0
Ξ

′ (𝜏) (Ξ(𝑦𝑖) − Ξ(𝜏))𝑛−𝛽−1
(
1

Ξ
′ (𝜏)

𝜕

𝜕𝜏

)𝑛
𝐹𝛼𝑙 (·, 𝜏, ·)𝑑𝜏 (17)

and (
𝐶𝐷

𝛽,Ξ

0+ 𝐹
𝛼
𝑟

)
(𝑦) = 1

Γ(𝑛 − 𝛽)

∫ 𝑦𝑖

0
Ξ

′ (𝜏) (Ξ(𝑦𝑖) − Ξ(𝜏))𝑛−𝛽−1
(
1

Ξ
′ (𝜏)

𝜕

𝜕𝜏

)𝑛
𝐹𝛼𝑟 (·, 𝜏, ·)𝑑𝜏. (18)

Definition 2.6. The fuzzy Ξ-Hilfer fractional derivative of order 𝛼 ∈ [0, 1] and 𝛽 ∈ (0, 1) is defined

as

𝐷
𝛼,𝛽,Ξ

0+𝑦𝑖 𝐹 (𝑦) = 𝐼
𝛼(1−𝛽),Ξ
0+𝑦𝑖

(
1

Ξ
′ (𝑦𝑖)

𝜕

𝜕𝑦𝑖

)
𝐼
(1−𝛼) (1−𝛽),Ξ
0+𝑦𝑖 𝐹 (𝑦) (19)

for a function 𝐹 : Ω → 𝐽4𝑛 such that the expression on the right side exists.

Then (
𝐷
𝛼,𝛽,Ξ

0+𝑦𝑖 𝐹
)
(𝑦) =

[ (
𝐷
𝛼,𝛽,Ξ

0+𝑦𝑖 𝐹
𝛼
𝑙

)
(𝑦),

(
𝐷
𝛼,𝛽,Ξ

0+𝑦𝑖 𝐹
𝛼
𝑟

)
(𝑦)

]
=

[ (
𝐼
𝛼(1−𝛽),Ξ
0+𝑦𝑖

(
1

Ξ
′ (𝑦𝑖)

𝜕

𝜕𝑦𝑖

)
𝐼
(1−𝛼) (1−𝛽),Ξ
0+𝑦𝑖 𝐹𝛼𝑙

)
(𝑦),(

𝐼
𝛼(1−𝛽),Ξ
0+𝑦𝑖

(
1

Ξ
′ (𝑦𝑖)

𝜕

𝜕𝑦𝑖

)
𝐼
(1−𝛼) (1−𝛽),Ξ
0+𝑦𝑖 𝐹𝛼𝑟

)
(𝑦)

]
. (20)
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Remark 1.

(i) When 𝛼 = 0 and 0 < 𝛽 < 1, the Ξ-Hilfer fractional derivative corresponds to the fuzzy

Ξ-type Riemann-Liouville fractional derivative:

𝐷
𝛼,𝛽,Ξ

0+𝑦𝑖 𝐹 (𝑦) =
(
1

Ξ
′ (𝑦𝑖)

𝜕

𝜕𝑦𝑖

)
𝐼
(1−𝛽),Ξ
0+𝑦𝑖 𝐹 (𝑦)

=𝑅𝐿𝐷
𝛼,Ξ

0+𝑦𝑖𝐹 (𝑦).

(ii) When 𝛼 = 1 and 0 < 𝛽 < 1, the fuzzy Ξ-Hilfer fractional derivative corresponds to the fuzzy

Ξ-type Caputo fractional derivative:

𝐷
𝛼,𝛽,Ξ

0+𝑦𝑖 𝐹 (𝑦) =𝐼
(1−𝛽),Ξ
0+𝑦𝑖

(
1

Ξ
′ (𝑦𝑖)

𝜕

𝜕𝑦𝑖

)
𝐹 (𝑦)

=𝐶𝐷
𝛼,Ξ

0+𝑦𝑖𝐹 (𝑦).

Definition 2.7. The fuzzy Dirac operator of 𝐹 is defined as

𝐷 (𝐹) =
3∑︁

𝑘=1, 𝑗=0
𝑒𝑘𝑒 𝑗

𝜕𝐹𝑗

𝜕𝑦𝑘
.

Let 𝜂 be a real number. The disturbed fuzzy Dirac operator is defined as

𝐷𝜂A = 𝐷A + 𝜂A .

Definition 2.8. A fuzzy function 𝐹 : Ω → 𝐽4𝑛 is called a generalized regular fuzzy function if it

satisfies 𝐷𝜂𝐹 = 0̂4.

Definition 2.9. Assume that L(𝑡, 𝑦,A ) is a first order differential opeartor depending on the first

order derivative 𝜕A
𝜕𝑦 𝑗

and 𝑡, 𝑦,A , and that 𝑙 (𝑡, 𝑦, 𝑢) is a differential operator on the time variate 𝑡.

If L transforms solutions of 𝑙A = 0̂4 into solutions of the same equations for fixed 𝑡 (i.e. 𝑙A = 0̂4
implies 𝑙 [LA ] = 0̂4), then L is called "associated" to 𝑙.

Let 𝑇 : 𝑋 → 𝑌 be an abstract operator. Consider the fixed point equation

𝜏 = 𝑇 (𝜏), 𝜏 ∈ 𝑋 (21)

and the inequality

D ′ (𝜏, 𝑇 (𝜏)) ≤ 𝜖 . (22)
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Definition 2.10. Assume that 𝜙 : R+ → R+ is an increasing function (continuous at 0 and 𝜙(0) = 0).

If for each 𝜖 > 0 and for each solution 𝑥∗ of (22) there exists a solution 𝑦∗ of the fixed point equation

(21) such that

D ′ (𝑥∗, 𝑦∗) ≤ 𝜙(𝜖),

then the equation (21) is generalized Hyers-Ulam stable. For each 𝜏 ∈ R+, if there exists 𝑘 > 0

such that 𝜙(𝜏) := 𝑘𝜏, then the equation (21) is Hyers-Ulam stable.

3 Main results

The fixed points of the following operator equation (23) are the solutions of (1),

𝑇 (A ) :=A (𝑡, 𝑦)

=
𝜑(𝑦)

Γ(𝛼(1 − 𝛽) + 𝛽)Ξ(𝑡)
(𝛼−1) (1−𝛽) + 1

Γ(𝛽)

∫ 𝑡

0
Ξ

′ (𝜏) (Ξ(𝑡) − Ξ(𝜏))L(A )𝑑𝜏. (23)

Theorem 3.1. Assume that 𝐴( 𝑗) (𝑡, 𝑦) ( 𝑗 = 1, 2, 3), 𝐵(𝑡, 𝑦), 𝐶 (𝑡, 𝑦) are quaternion-valued functions

for 𝑡 ∈ [0, 𝑇]. The operator L is associated with 𝐷𝜂, if the following hypotheses are satisfied:

(1) 𝐴
(1)
0 = 𝐴

(2)
3 = −𝐴(3)

2 ,

𝐴
(1)
1 = 𝐴

(2)
2 = −𝐴(3)

3 ,

𝐴
(1)
2 = −𝐴(2)

1 = 𝐴
(3)
0 ,

𝐴
(1)
3 = −𝐴(2)

0 = −𝐴(3)
1 ;

(2) (𝐷𝐴(1) + 𝜂𝐴(1) − 2𝐵1𝑒0)𝑒1 = (𝐷𝐴(2) + 𝜂𝐴(2) − 2𝐵2𝑒0)𝑒2

=(𝐷𝐴(3) + 𝜂𝐴(3) − 2𝐵3𝑒0)𝑒3;

(3) 𝜂𝐷𝐴(1)𝑒1 + 2𝜂2
3∑︁
𝑗=1

𝐴
(1)
𝑗
𝑒 𝑗𝑒1 + 2𝜂2𝐴(1)

1 𝑒0 + 𝐷𝐵 + 2𝜂(𝐵2𝑒2 + 𝐵3𝑒3) = 0;

(4) 𝐷𝜂𝐶 = 𝐷𝐶 + 𝜂𝐶 = 0 for each 𝑡 ∈ [0, 𝑇] .

Proof. By Definition 2.13, if 𝐷𝜂A = 0̂4 implies 𝐷𝜂 (LA ) = 0̂4, we can easily obtain that the

operator L is associated with the operator 𝐷𝜂. It is easy to verify it, so we omit the proof here. �

Page 9



Pure and Applicable Analysis 2022, 2022: 6 https://www.lynnp.org

Example 3.2. If 𝜂 = 1, 𝐴( 𝑗) = 𝑓 (𝑡, 𝑦1, 𝑦2, 𝑦3)𝑒 𝑗 ( 𝑗 = 1, 2, 3), 𝐵 = 𝑓 (𝑡, 𝑦1, 𝑦2, 𝑦3)𝑒0 and𝐶 (𝑡, 𝑦) = 0,

where real-valued function 𝑓 (𝑡, 𝑦1, 𝑦2, 𝑦3) ∈ 𝐶2(Ω) for each 𝑡 ∈ [0, 𝑇]. Then the operator 𝐿 is

associated with the operator 𝐷𝜂.

Moreover, we can get the interior estimate of a generalized fuzzy regular function by the associated

function space theory.

Theorem 3.3. Suppose thatΩ𝑠
′ ⊂ Ω𝑠

′′ and Ω̄𝑠
′′ ⊂ Ω. Assume that A is a generalized fuzzy regular

function and 𝑚Ω is the finite measure of Ω ⊂ R𝑛. We obtain the interior estimate of generalized

fuzzy regular function

D ′
(
𝜕A

𝜕𝑦𝑖
, 0̂4

)
≤
𝜂2

( 3𝑚Ω
4𝜋

) 1
3 [3 + 12 (

3𝑚Ω
4𝜋 ) 13 ]

𝑑𝑖𝑠𝑡 (Ω𝑠
′ , 𝜕Ω𝑠

′′ ) D ′ (A , 0̂4)

=𝛾𝐷
′ (A , 0̂4) (24)

Proof. Assume that A is a quaternion-valued function. It follows that, we have



𝜕A𝜕𝑦𝑖





𝑠
′
≤
𝜂2

( 3𝑚Ω
4𝜋

) 1
3 [3 + 12 (

3𝑚Ω
4𝜋 ) 13 ]

𝑑𝑖𝑠𝑡 (Ω𝑠
′ , 𝜕Ω𝑠

′′ ) ‖A ‖𝑠′′

=𝛾‖A ‖𝑠′′ . (25)

Now, for a generalized fuzzy regular function A , we consider its endpoint functions A 𝛼
𝑙
and A 𝛼

𝑟 .

It is clear that 𝑣𝛼
𝑙
and 𝑣𝛼𝑟 are generalized regular functions. We have



𝜕A 𝛼

𝑙

𝜕𝑦𝑖






𝑠
′
≤
𝜂2

( 3𝑚Ω
4𝜋

) 1
3 [3 + 12 (

3𝑚Ω
4𝜋 ) 13 ]

𝑑𝑖𝑠𝑡 (Ω𝑠
′ , 𝜕Ω𝑠

′′ ) ‖A 𝛼
𝑙 ‖𝑠′′ (26)

and 



𝜕A 𝛼
𝑟

𝜕𝑦𝑖






𝑠
′
≤
𝜂2

( 3𝑚Ω
4𝜋

) 1
3 [3 + 12 (

3𝑚Ω
4𝜋 ) 13 ]

𝑑𝑖𝑠𝑡 (Ω𝑠
′ , 𝜕Ω𝑠

′′ ) ‖A 𝛼
𝑟 ‖𝑠′′ (27)

Moreover, we can obtain

D ′
(
𝜕A

𝜕𝑦𝑖
, 0̂4

)
= sup
𝛼∈[0,1]

{
𝑑

( [
𝜕A

𝜕𝑦𝑖

]𝛼
, 0̂4

)}
= sup
𝛼∈[0,1]

{
𝑑

( [(
𝜕A

𝜕𝑦𝑖

)𝛼
𝑙

,

(
𝜕A

𝜕𝑦𝑖

)𝛼
𝑟

]
, 0̂4

)}
≤
𝜂2

( 3𝑚Ω
4𝜋

) 1
3 [3 + 12 (

3𝑚Ω
4𝜋 ) 13 ]

𝑑𝑖𝑠𝑡 (Ω𝑠
′ , 𝜕Ω𝑠

′′ ) sup
𝛼∈[0,1]

{𝑑 ( [A 𝛼
𝑙 ,A

𝛼
𝑟 ], 0̂4)}

=𝛾𝐷
′ (A , 0̂4), (28)
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where 𝛾 is a fixed constant.

�

For our subsequent results, we need the following hypotheses.

(H1) For A ∈ 𝐽4𝑛 and 𝛼 = (𝛼0, 𝛼1, 𝛼2, 𝛼3) ∈ [0, 1] × [0, 1] × [0, 1] × [0, 1],

𝑙𝑒𝑛𝑖 (A 𝛼) ≥ 𝑙𝑒𝑛𝑖
(

A 𝛼
0

Γ(𝛼(1 − 𝛽) + 𝛽) 𝑡
(𝛼−1) (1−𝛽)

+ 1
Γ(𝛽)

∫ 𝑡

0
Ξ

′ (𝜏) (Ξ(𝑡) − Ξ(𝜏))𝛽−1L(A )𝑑𝜏
)
, (29)

where 𝑖 ∈ Λ and 𝑙𝑒𝑛𝑖 (A 𝛼) = A 𝛼
𝑖𝑟
− A 𝛼

𝑖𝑙
;

(H2) For A ∈ 𝐽4𝑛 and 𝛼 = (𝛼0, 𝛼1, 𝛼2, 𝛼3) ∈ [0, 1] × [0, 1] × [0, 1] × [0, 1], 𝑙𝑒𝑛𝑖 (A 𝛼 (𝑡, ·)) is

monotonous in 𝑡 for 𝑖 ∈ Λ, and 𝑙𝑒𝑛𝑖 (A 𝛼 (·, 𝑦 𝑗 )) is monotonus in 𝑦 𝑗 for 𝑖, 𝑗 ∈ Λ;

(H3) For A ∈ 𝐽4𝑛, ℎ > 0, 𝑖 ∈ Λ and 𝛼 = (𝛼0, 𝛼1, 𝛼2, 𝛼3) ∈ [0, 1] × [0, 1] × [0, 1] × [0, 1],

A 𝛼𝑖
𝑖𝑙

(𝑡 + ℎ, ·) −A 𝛼𝑖
𝑖𝑙

(𝑡, ·) is nondecreasing in 𝛼𝑖 andA 𝛼𝑖
𝑖𝑟

(𝑡 + ℎ, ·) −A 𝛼𝑖
𝑖𝑟

(𝑡, ·) is nonincreasing in 𝛼𝑖;

(H4) For A ∈ 𝐽4𝑛, ℎ > 0, 𝑖, 𝑗 ∈ Λ and 𝛼 = (𝛼0, 𝛼1, 𝛼2, 𝛼3) ∈ [0, 1] × [0, 1] × [0, 1] × [0, 1],

A 𝛼𝑖
𝑖𝑙

(·, 𝑦 𝑗 + ℎ) −A 𝛼𝑖
𝑖𝑙

(·, 𝑦 𝑗 ) is nondecreasing in 𝛼𝑖 andA 𝛼𝑖
𝑖𝑟

(·, 𝑦 𝑗 + ℎ) −A 𝛼𝑖
𝑖𝑟

(·, 𝑦 𝑗 ) is nonincreasing

in 𝛼𝑖;

Theorem 3.4. Assume that L satisfies the hypotheses of Theorem 3.1 and the hypotheses (𝐻1) −

(𝐻4). The solution of the initial value problem (1) A (𝑡, 𝑦) is in the conical domain 𝑀𝜎 = {(𝑡, 𝑦) :

𝑦 ∈ Ω, 𝑡 ∈ [0, 𝜎] · 𝑑𝑖𝑠𝑡 (𝑦, 𝜕Ω)}(𝜎 is small enough), and is also generalized fuzzy regular for each

𝑡. Moreover, the fixed point equation A = 𝑇 (A ) is Hyers-Ulam stable.

Proof. To prove this, we recall that any solution of the differential equation (1) must satisfy the

Volterra equation

A (𝑡, 𝑦) = 𝜑(𝑦)
Γ(𝛼(1 − 𝛽) + 𝛽)Ξ(𝑡)

(𝛼−1) (1−𝛽)

+ 1
Γ(𝛽)

∫ 𝑡

0
Ξ

′ (𝜏) (Ξ(𝑡) − Ξ(𝜏))𝛽−1L(A )𝑑𝜏.

Set that

𝑇 (A ) =A (𝑡, 𝑦) = 𝜑(𝑦)
Γ(𝛼(1 − 𝛽) + 𝛽)Ξ(𝑡)

(𝛼−1) (1−𝛽)

+ 1
Γ(𝛽)

∫ 𝑡

0
Ξ

′ (𝜏) (Ξ(𝑡) − Ξ(𝜏))𝛽−1L(A )𝑑𝜏. (30)

Page 11



Pure and Applicable Analysis 2022, 2022: 6 https://www.lynnp.org

Then, we show that the operator 𝑇 has a fixed point. It is clear that 𝑇 maps 𝐶 ( [0, 𝑇] × Ω, 𝐽4𝑛) to

itself. Moreover, we find that

D ′ (𝑇 (A ) 	 𝑇 (𝜈), 0̂4) =D
′
(
1

Γ(𝛽)

∫ 𝑡

0
Ξ

′ (𝜏) (Ξ(𝑡) − Ξ(𝜏))𝛽−1L(A )𝑑𝜏,

1
Γ(𝛽)

∫ 𝑡

0
Ξ

′ (𝜏) (Ξ(𝑡) − Ξ(𝜏))𝛽−1L(B)𝑑𝜏
)

=
1

Γ(𝛽)

∫ 𝑡

0
Ξ

′ (𝜏) (Ξ(𝑡) − Ξ(𝜏))𝛽−1
( 3∑︁
𝑗=1

𝐴( 𝑗) 1
Ξ

′ (𝑦 𝑗 )
𝜕

𝜕𝑦 𝑗
D ′ (A 	 B, 0̂4)

+ 𝐵D ′ (A 	 B, 0̂4)
)
𝑑𝜏

≤ 1
Γ(𝛽) (𝑀 + 3𝛾𝑁)D ′ (A 	 B, 0̂4)

∫ 𝑡

0
Ξ

′ (𝜏) (Ξ(𝑡) − Ξ(𝜏))𝛽−1𝑑𝜏

=
1

Γ(𝛽 + 1) (𝑀 + 3𝛾𝑁)Ξ(𝑡)𝛽D ′ (A 	 B, 0̂4)

=𝜂D′(A 	 B, 0̂4), (31)

where 𝑀 = ‖𝐵‖, 𝑁 = 𝑚𝑎𝑥 𝑗=1,2,3{‖𝐴( 𝑗) ‖}.

We can choose a number 𝜏 > 0 such that

𝜂 =
1

Γ(𝛽 + 1) (𝑀 + 3𝛾𝑁)𝜏𝛼 < 1.

Then in the domain 𝑀𝜎 = {(𝑡, 𝑦) : 𝑦 ∈ Ω, 𝑡 ∈ [0, 𝜎] .𝑑𝑖𝑠𝑡 (𝑦, 𝜕Ω) ≤ 𝜏}, 𝑇 is a contraction mapping.

Thus, by the Banach’s fixed point theorem, we obtain the desired uniqueness of the solution of the

differential equation. It follows that the operator 𝑇 is a 𝑐-weakly Picard operator with the positive

constant 𝑐 = 1
1−𝜂 and the fixed point equation A = 𝑇 (A ) is Hyers-Ulam stable.

Moreover, the solution A (𝑡, 𝑦) belongs to the associated space for each 𝑡. The solution A (𝑡, 𝑦) is

also generalized regular. �

Example 3.5. Suppose that 𝜂 is any real number, 𝐶 (𝑡, 𝑦) ∈ 𝐶1(Ω,H) is any generalized regular

function, and 𝐴(1) (𝑡, 𝑦) ∈ 𝐶2(Ω,H) is any quaternion valued function for each 𝑡 ∈ [0, 𝑇]. Suppose,

further, that 𝐴(2) (𝑡, 𝑦) = −𝐴(1) (𝑡, 𝑦)𝑒3, 𝐴(3) (𝑡, 𝑦) = 𝐴(1) (𝑡, 𝑦)𝑒2, 𝐵(𝑡, 𝑦) = −𝜂𝐴(1) (𝑡, 𝑦)𝑒1. It is

easy to verify that L is associated with D𝜂 under the above conditions. Then by Theorem 3.4, there

exists a unique solution of the initial value problem (1), and the solution A (𝑡, 𝑦) is also generalized

fuzzy regular for each 𝑡. Moreover, the fixed point equation A = 𝑇 (A ) is Hyers-Ulam stable.
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In fact, the fixed point theorem plays a key role in the proof of Theorem 3.4, and this is called the

fixed point method. By using the fixed point method, we continue to consider the existence and

stability of the solution for the abstract Cauchy problem
𝐷
𝛼,𝛽,Ξ

0+𝑡 A (𝑡) = 𝐹 (𝑡,A (𝑡)), 0 < 𝛼, 𝛽 < 1, 𝑡 ∈ [0, 𝑇],

A (0) = A0,
(32)

where A (𝑦) is a quaternion fuzzy function.

We denote the integral operator 𝑇 by

𝑇 (A (𝑡)) = A0
Γ(𝛼(1 − 𝛽) + 𝛽)Ξ(𝑡)

(𝛼−1) (1−𝛽)

+ 1
Γ(𝛽)

∫ 𝑡

0
Ξ

′ (𝜏) (Ξ(𝑡) − Ξ(𝜏))𝛽−1𝐹 (𝜏,A (𝜏))𝑑𝜏. (33)

Recall thatA is a solution to the Cauchy problem (32) if and only ifA is a solution to the integral

equation (33). Moreover, A satisfies the integral equation (33) if and only if A satisfies the fixed

point equationA = 𝑇 (A ). In other words,A is a solution to the Cauchy problem (32) if and only

if A is a fixed point of the operator 𝑇 .

𝑇 (A ) := A (𝑡) = A0
Γ(𝛼(1 − 𝛽) + 𝛽)Ξ(𝑡)

(𝛼−1) (1−𝛽)

+ 1
Γ(𝛽)

∫ 𝑡

0
Ξ

′ (𝜏) (Ξ(𝑡) − Ξ(𝜏))𝛽−1𝐹 (𝜏,A (𝜏))𝑑𝜏. (34)

For our subsequent results, we need the following hypotheses.

(H5) There exists a constant 𝑀 for which 𝐷 ′ (𝐹 (𝑡,A ), 0̂4) < 𝑀 holds for all 𝑡 ∈ 𝐼 and allA ∈ 𝐽4𝑛.

(H6) For A ∈ 𝐽4𝑛 and 𝛼 = (𝛼0, 𝛼1, 𝛼2, 𝛼3) ∈ [0, 1] × [0, 1] × [0, 1] × [0, 1],

𝑙𝑒𝑛𝑖 (A 𝛼) ≥𝑙𝑒𝑛𝑖
(

A 𝛼
0

Γ(𝛼(1 − 𝛽) + 𝛽)Ξ(𝑡)
(𝛼−1) (1−𝛽)

+ 1
Γ(𝛽)

∫ 𝑡

0
Ξ

′ (𝜏) (Ξ(𝑡) − Ξ(𝜏))𝛽−1𝐹 (𝜏,A 𝛼 (𝜏))𝑑𝜏
)
, (35)

where 𝑖 ∈ Λ and 𝑙𝑒𝑛𝑖 (A 𝛼) = A 𝛼
𝑖𝑟
− A 𝛼

𝑖𝑙
,

(H7) For A ∈ 𝐽4𝑛 and 𝛼 = (𝛼0, 𝛼1, 𝛼2, 𝛼3) ∈ [0, 1] × [0, 1] × [0, 1] × [0, 1], 𝑙𝑒𝑛𝑖 (A 𝛼 (𝑡)) is

monotonous in 𝑡 for 𝑖 ∈ Λ;

(H8) For A ∈ 𝐽4𝑛, ℎ > 0, 𝑖 ∈ Λ and 𝛼 = (𝛼0, 𝛼1, 𝛼2, 𝛼3) ∈ [0, 1] × [0, 1] × [0, 1] × [0, 1],

A 𝛼
𝑖𝑙
(𝑡 + ℎ) − A 𝛼

𝑖𝑙
(𝑡) is nondecreasing in 𝛼𝑖 and A 𝛼𝑖

𝑖𝑟
(𝑡 + ℎ) − A 𝛼𝑖

𝑖𝑟
(𝑡) is nonincreasing in 𝛼𝑖.
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Theorem 3.6. Assume that hypotheses (𝐻5) − (𝐻8) are satisfied. Let 𝐹 : 𝐼 × 𝐽4𝑛 → 𝐽4𝑛 be

Lipschitz continuous and bounded, with Lipschitz constant 𝐿. Then, there exists a unique solution

to the Cauchy problem (1) on a neighbourhood of 𝑎 ∈ 𝐼. Moreover, the fixed point equation

A = 𝑇 (A ) is Hyers-Ulam stable.

Proof. By definition and hypotheses (𝐻5) − (𝐻7), it is easy to verify that the Ξ-Hilfer derivative

of A is well-defined. Let [0, 𝜖] × [A0 − 𝛿,A0 + 𝛿] ⊂ 𝐼 × 𝐽4𝑛 be a compact subset on which 𝐹 is

defined. Then 𝑇 to be well-defined, 𝐷 ′ (𝑇A − A0, 0̂4) < 𝛿 for all A ∈ [A0 − 𝛿,A0 + 𝛿], and

𝐷
′ (𝑇A 	 A0, 0̂4) =𝐷

′
(
1

Γ(𝛽)

∫ 𝑡

0
Ξ

′ (𝜏) (Ξ(𝑡) − Ξ(𝜏))𝛽−1𝐹 (𝜏,A (𝜏))𝑑𝜏, 0̂4
)

≤ 1
Γ(𝛽)

∫ 𝑡

0
D ′

(
Ξ

′ (𝜏) (Ξ(𝑡) − Ξ(𝜏))𝛽−1𝐹 (𝜏,A (𝜏)), 0̂4
)
𝑑𝜏

≤ 𝑀

Γ(𝛽)

∫ 𝑡

0
Ξ

′ (𝜏) (Ξ(𝑡) − Ξ(𝜏))𝛽−1𝑑𝜏

≤ 𝑀

Γ(𝛽 + 1) 𝜖
𝛽. (36)

Hence we require 𝑀
Γ(𝛽+1) 𝜖

𝛽 < 𝛿, i.e., we must pick 𝜖 > 0 such that 𝜖 < [ 𝛿Γ(𝛽+1)
𝑀

]
1
𝛽 .

For 𝑘 = 0, 1, 2, . . . , if we define 𝑋0(𝑡) = A0,

𝑋𝑘+1(𝑡) =
A0

Γ(𝛼(1 − 𝛽) + 𝛽)Ξ(𝑡)
(𝛼−1) (1−𝛽)

+ 1
Γ(𝛽)

∫ 𝑡

0
Ξ

′ (𝜏) (Ξ(𝑡) − Ξ(𝜏))𝛽−1𝐹 (𝜏, 𝑋𝑘 (𝜏))𝑑𝜏. (37)

Then,

𝐷
′ (𝑇 (𝑋𝑚 	 𝑋𝑛), 0̂4) =

1
Γ(𝛽)𝐷

′
(∫ 𝑡

0
Ξ

′ (𝜏) (Ξ(𝑡) − Ξ(𝜏))𝛽−1(𝐹 (𝜏, 𝑋𝑚 (𝜏))

	𝐹 (𝜏, 𝑋𝑛 (𝜏)))𝑑𝜏, 0̂4
)

≤ 𝐿

Γ(𝛽)

���� ∫ 𝑡

0
Ξ

′ (𝜏) (Ξ(𝑡) − Ξ(𝜏))𝛽−1𝐷 ′ (𝑋𝑚 (𝜏) 	 𝑋𝑛 (𝜏), 0̂4)𝑑𝜏
����

≤ 𝐿

Γ(𝛽 + 1) 𝜖
𝛽𝐷

′ (𝑋𝑚 	 𝑋𝑛, 0̂4). (38)

If 𝜖 < 𝑚𝑖𝑛{[ 𝛿Γ(𝛽+1)
𝑀

]
1
𝛽 , [ Γ(𝛽+1)

𝐿
]
1
𝛽 }, the mapping is a contraction. In such a case, 𝑇 is a contraction,

and by the Banach fixed point theorem, 𝑇 has a unique fixed point. Thus, there exists a unique

𝑋∗ ∈ 𝐶 ( [0, 𝜖] × [A0 − 𝛿,A0 + 𝛿]) such that 𝑇 (𝑋∗) = 𝑋∗. One may construct this function by
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𝑋∗(𝑡) = 𝑙𝑖𝑚𝑘→∞𝑋𝑘 (𝑡). This function is the unique solution to the Cauchy problem (1) on the

interval [0, 𝜖], where 𝜖 < 𝑚𝑖𝑛{[ 𝛿Γ(𝛽+1)
𝑀

]
1
𝛽 , [ Γ(𝛽+1)

𝐿
]
1
𝛽 }. It follows that the operator 𝑇 is a 𝑐-weakly

Picard operator with the positive constant 𝑐 = 1
1− 𝐿

Γ(𝛽+1) 𝜖
𝛽
and the fixed point equationA = 𝑇 (A ) is

Hyers-Ulam stable. �

Example 3.7.
𝐷
𝛼,𝛽,Ξ

0+𝑡 A (𝑡) = 𝐹 (𝑡,A (𝑡)) =
√︁
|A (𝑡) | + 9 	 (𝑖 + 𝑗 + 𝑘)𝑠𝑖𝑛( |A (𝑡) |)

A (0) = A0, 0 < 𝛼, 𝛽 < 1.
(39)

Let A ,B ∈ 𝐽4𝑛, and note that

𝐷
′ (𝐹 (A ) 	 𝐹 (B), 0̂4) =𝐷

′ (
√︁
|A |2 + 9 	

√︁
|B |2 + 9 	 (𝑖 + 𝑗 + 𝑘) (𝑠𝑖𝑛( |A |) 	 𝑠𝑖𝑛( |B |)), 0̂4)

≤𝐷 ′ (
√︁
|A |2 + 9 	

√︁
|B |2 + 9, 0̂4) + 3𝐷

′ (𝑠𝑖𝑛( |A |) 	 𝑠𝑖𝑛( |B |), 0̂4)

≤ |A | + |B |√︁
|A |2 + 9 	

√︁
|B |2 + 9

𝐷
′ ( |A | 	 |B |, 0̂4) + 3𝐷

′ ( |A | 	 |B |, 0̂4)

≤4𝐷 ′ (A 	 B, 0̂4) (40)

so 𝐹 is Lipschitz continuous with Lipschitz constant 𝐿 = 4. Furthermore, since A ∈ 𝐽4𝑛 by

assumption, A (𝑡) = (A0(𝑡),A1(𝑡),A2(𝑡),A3(𝑡)) and |A𝑖 | ≤ 1, (𝑖 = 0, 1, 2, 3), hence |𝐹 (A ) | ≤
√
13 + 3. So 𝐹 is continuous and bounded. Assume that hypotheses (𝐻5) − (𝐻8) are satisfied.

Theorem3.6 unique local solution to (39). Moreover, the fixed point equation of (39) is Hyers-Ulam

stable.
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